• 제목/요약/키워드: Physical·Mechanical property

검색결과 364건 처리시간 0.028초

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

Autonomous Drone Path Planning for Environment Sensing

  • Kim, Beomsoo;Lee, Sooyong
    • 센서학회지
    • /
    • 제27권4호
    • /
    • pp.209-215
    • /
    • 2018
  • Recent research in animal behavior has shown that gradient information plays an important role in finding food and home. It is also important in optimization of performance because it indicates how the inputs should be adjusted for maximization/minimization of a performance index. We introduce perturbation as an additional input to obtain gradient information. Unlike the typical approach of calculating the gradient from the derivative, the proposed processing is very robust to noise since it is performed as a summation. Experimental results prove the validity of the process of spatial gradient acquisition. Quantitative indices for measuring the effect of the amplitude and the frequency are developed based on linear regression analysis. Drones are very useful for environmental monitoring and an autonomous path planning is required for unstructured environment. Guiding the drone for finding the origin of the interested physical property is done by estimating the gradient of the sensed value and generating the drone trajectories in the direction which maximizes the sensed value. Simulation results show that the proposed method can be successfully applied to identify the source of the physical quantity of interest by utilizing it for path planning of an autonomous drone in 3D environment.

석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구 (A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler)

  • 이정언;이재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구 (A Study on Droplet Formation from Piezo Inkjet Print Head)

  • 오세영;이정용;이유섭;정재우;위상권
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.

Sheath/Core형 나일론/PET 고중공 복합사 및 직물물성 연구 (A Study on The Physical Properties of Sheath/Core Type Nylon/PET High Hollow Composite Yarns and its Fabrics)

  • 김승진;박경순;조진황
    • 한국염색가공학회지
    • /
    • 제21권4호
    • /
    • pp.1-10
    • /
    • 2009
  • This paper surveys the physical properties of sheath/core nylon/PET high hollow composites filaments and its fabrics according to the various elution conditions such as concentration of elution, eluted time and eluted temperature. For this purpose, sheath/core nylon/PET filament was texturized and four kinds of fabric specimens were woven with different warp and weft densities. These grey fabrics were eluted with two kinds of concentrations of NaOH (30g/l, 40g/l), three kinds of eluted temperatures $50^{\circ}C,\;60^{\circ}C,\;85^{\circ}C$) and two kinds of eluted times (60min, l20min). The elution characteristics of these specimens were investigated and discussed with different elution conditions. In addition, the mechanical properties such as extensibility, bending rigidity, shear modulus and compressional work of these specimens aceording to the elution conditions were analysed and summarized with cross-sectional shapes of eluted filaments measured by SEM.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성 (Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions)

  • 김승호;염영진
    • 열처리공학회지
    • /
    • 제26권5호
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

견직물의 물리적 자극에 따른 태와 역학적 특성 (Physical Stimulus of Silk Woven Fabrics, Subjective Hand and Mechanical Properties)

  • 김춘정;나영주
    • 한국의류학회지
    • /
    • 제24권3호
    • /
    • pp.429-439
    • /
    • 2000
  • This study was aimed to investigate the handle and mechanical properties of silk woven fabrics according to the fabric structure and yarn types 56 male and female students evaluated 16 black specimens with semantic differential scale of 20 hand adjectives. Mechanical parameters such as surface properties, bending properties and compression properties were tested using by KES-FS system. Data were analyzed through factor analysis, pearson correlation coefficient and t-test using PC SAS package. The results were as follows: The hand adjectives were grouped as 4 'surface roughness', 'flexibility', ;sense of thermal', and 'dryness'. 'Surface roughness' was highly sensed at satin fabrics of hard-twist yarn, noil yarn and spun yarn, while it was not at the fabrics of normal satin and twill at all. 'Flexibility' was reverse to 'surface roughness'. Thermal sense was felt highly at satin fabrics of noil-yarn, while low at plain fabrics of normal yarn. 'Dryness' was high at satin fabrics of hard-twist yarn and while it was low at normal satin fabrics. Predicted equations for subjective hand from mechanical properties of fabrics were developed using Stevens's law and stepwise regression and the coefficients of determination were high.

  • PDF

SWCNT/Nafion 복합체의 분산능 향상을 통한 IPMC의 기계적 특성 향상 (Improvement of Mechanical Properties of IPMC through Developing a Degree of Dispersion of SWCNT/Nafion Composite)

  • 권희준;김하나;강정호
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.131-136
    • /
    • 2011
  • Many researchers are recently studying about Electroactive polymer(EAP). But it has a physical limitation, because of property of material. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. This study focuses on the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. To come up with mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we dispersed Single-walled carbon nanotubes(SWCNTs). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. We fabricated a disperse SWCNT/Nafion composite uniformly. Through the use of the E-beam evaporator to form an uniform electrode layer, we consummated the IPMC actuator. This result shows improving 1.5 times mechanical properties about driving force in IPMC.

변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가 (Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect)

  • 송준혁;나석찬;유효선;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.