• Title/Summary/Keyword: Physic Engine

Search Result 5, Processing Time 0.026 seconds

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

An Implementation of Mobile Game using JBox2D Physics Engine in Android Platform (안드로이드 플랫폼에서 JBox2D 물리 엔진을 이용한 모바일 게임구현)

  • Hwang, Ki-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.119-126
    • /
    • 2011
  • As a software component for computer game, the physics engine simulates objects' movement according to the laws of physics. This paper introduces a design and implementation of mobile game on the Android platform, where we used JBox2D physics engine library and Android graphics APIs. We borrowed the key idea of this game from Crayon Physics which is known as a famous PC game. This game starts with no way from user character to destination character. The game user has to make a way to destination character from user character by creating polygon objects between them. The user wins when user character meets destination character. However, the game user has to decide the time to create objects and their shapes well because all objects in this game are governed by the laws of physics. As an important thing of this paper, we introduced into this game new input methods of LCD touch and sensors embedded in mobile devices but not in PCs. Game users can create objects by drawing polygons with LCD touch and move objects or characters according to sensor values from accelerator sensors by tilting the mobile device.

Improving the Rendering Speed of 3D Model Animation on Smart Phones

  • Ng, Cong Jie;Hwang, Gi-Hyun;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.266-270
    • /
    • 2011
  • The advancement of technology enables smart phones or handheld devices to render complex 3D graphics. However, the processing power and memory of smart phones remain very limited to render high polygon and details 3D models especially on games which requires animation, physic engine, or augmented reality. In this paper, several techniques will be introduced to speed up the computation and reducing the number of vertices of the 3D meshes without losing much detail.

A VR-Based Integrated Simulation for the Remote Operation Technology Development of Unmanned-Vehicles in PRT System (자동 운전 PRT 차량의 무선 관제 기술 개발을 위한 가상 환경 기반 통합 시뮬레이터 개발)

  • Park, Pyung-Sun;Kim, Hyun-Myung;Ok, Min-Hwan;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.43-56
    • /
    • 2013
  • Personal Rapid Transit(PRT), which is one of the next generation convergence transport technology, PRT system requires operation technology for controlling diverse vehicles and dealing with a variety of abnormal driving situations on a large scale trackway structures in expected operational area more efficiently and reliably. Before developing PRT control technology, it is essential that multiple testing procedures stepwise with building small scale test-tracks and develop real unmanned-vehicles. However, it is expected that the experiments demand huge amount of time and physical cost. Thus, simulation in virtual environment is efficient to develop wireless based control technology for multiple PRT vehicles prior to building real-test environment. In this paper, we propose a VR-based integrated simulator which physics engine is applied so that it enables simulation of front-wheel-steering PRT system rather than simple rail track system. The proposed simulator is also developed that it can reflect geographical features, infrastructures and network topology of expected driving region.

Experimental Investigation on Conceptual Design of Dual Stage Micro Plasma Thruster (이단 마이크로 플라즈마 추력기의 개념 설계에 대한 실험적 연구)

  • Trang, Ho Thi Thanh;Shin, Ji-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.540-543
    • /
    • 2011
  • This work is devoted to an experimental investigation on conceptual design of dual consecutive stage micro plasma thruster (${\mu}PT$). Optimization study on the thruster configuration has been performed for various electrode gap distances from 1 mm to 2 mm and the hole diameter from 0.3 mm to 2 mm depending on desired operating conditions and corresponding nozzle design requirement. The operation of ${\mu}PT$ at low pressure from $10^{-1}$ Torr to $10^{-4}$ Torr and at various argon flow rates ranging from 5 sccm to 300 sccm has been studied to understand the physic of plasma and the gas dynamics in details. The specific impulse can reach up to 3000-4000 seconds at low power consumptions from 1 to 5 W. Image of exhaust plume from ${\mu}PT$ will be provided and electrical characteristics is also mentioned in this paper.

  • PDF