• Title/Summary/Keyword: Phycobiliprotein

Search Result 8, Processing Time 0.022 seconds

Studies on the Isolation of Phycobiliprotein from S. platensis (S. platensis로부터 phycobiliprotein의 분리에 관한 연구)

  • Kim Jum-Ji;Kim Yoon-Kyoun;Lee Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.484-489
    • /
    • 2004
  • Isolation of phycobiliprotein from S. platensis was performed by using $30-60{\%}$ ammomium sulfate fractionation, Sephadex G-100 gel filtration and DEAE-Sephacel anionic exchange chromatography. Isolated phycobiliprotein was determined to be a c-phycocyanin with a maximum absorption wavelength at 620 nm. This phycobiliprotein consisted of $({\alpha}$ and $({\beta}$ subunit when analyzed through SDS-PAGE. The molecular weights of $({\alpha}$ and $({\beta}$ subunit were 14.5 kDa and 16 kDa, respectively. The native molecular weight of phycobiliprotein through gel filtration was about 100 kDa. These results show that the structure of phycobiliprotein from S. platensis might be aggregated form of $({\alpha}{\beta})_{3}-trimer$.

  • PDF

Assessment of the potential of algae phycobiliprotein nanoliposome for extending the shelf life of common carp burgers during refrigerated storage

  • Haghdoost, Amir;Golestan, Leila;Hasani, Maryam;Noghabi, Mostafa Shahidi;Shahidi, Seyed Ahmad
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.276-286
    • /
    • 2022
  • This study is focused on the effect of phycobiliprotein extraction of Gracilaria on the quality of common carp burgers, and the application of nanoliposomes containing pigment in the improvement of its antimicrobial and antioxidant activity of burgers during refrigerated storage in 18 days. Burgers were incorporated with phycobiliprotein and liposomal phycobiliprotein (2.5% and 5% w/w), and their chemical and microbial changes in terms of pH, peroxide value (PV), thiobarbituric acid (TBA), total volatile basic nitrogen (TVB-N), total viable counts (TVC), psychrotrophic bacterial counts (PTC), and sensory characteristics were evaluated. Results presented a nanoliposome size of about 515.5 nm with capable encapsulation efficiency (83.98%). Our results showed non-encapsulated phycobiliprotein could delay the deterioration of common carp burgers, as a reduction in PV, TBA, and TVB-N, TVC, and PTC values in burgers treated with free and nano encapsulated phycobiliprotein. Moreover, the potential of phycobiliprotein was improved when it was encapsulated into chitosan coated liposomes. Burgers treated with 5% nanoliposomes displayed the lowest amount of lipid oxidation and microbial deterioration in comparison to others during storage. According to chemical, microbial and sensory evaluation, the shelf life of common carp burgers was increased in samples treated with encapsulated phycobiliprotein at 2.5% and 5%, as compared to the control (p ≤ 0.05).

Mixotrophic Cultivation of a Native Cyanobacterium, Pseudanabaena mucicola GO0704, to Produce Phycobiliprotein and Biodiesel

  • Kim, Shin Myung;Bae, Eun Hee;Kim, Jee Young;Kang, Jae-Shin;Choi, Yoon-E
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1325-1334
    • /
    • 2022
  • Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].

Influence of Anaerobically Digested Dairy Waste on Growth and Bio-Active Compounds of Spirulina subsalsa (Cyanobacteria) under Semi-Continuous Culture Conditions

  • Kuntal Sarma;Preeti Chavak;Doli;Manju Sharma;Narendra Kumar;Rama Kant
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.114-121
    • /
    • 2024
  • The present communication deals with the standardization of suitable medium formulation along with anaerobically digested cow's urine (ADCU) for growth of Spirulina subsalsa. Growth was evaluated on the basis of photosynthetic and non-photosynthetic pigment. The results obtained from the study indicated that, SSM-1 and SSM-2 media are suitable for maximum synthesis of chlorophyll-α and carotenoids. The obtained results also indicated that SSM-5 medium is suitable for maximum synthesis of accessory light harvesting pigments phycobiliprotein, total carbohydrate, total protein and total lipid in S. subsalsa. From the study it could be concluded that all the five media combinations (viz. SSM-1, SSM-2, SSM-3, SSM-4 and SSM-5) would be suitable for mass cultivation of S. subsalsa. But among them, SSM-5 medium combination could be the most suitable medium.

Phycobilisome composition in Chondrus crispus (Gigartinales, Rhodophyta) from a wild type strain and its vegetatively derived green mutant

  • Cornish, M. Lynn;O' Leary, Stephen J.B.;Garbary, David J.
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.121-129
    • /
    • 2013
  • Intact phycobilisomes from a wild-type red Chondrus crispus and its vegetatively derived green mutant were isolated by centrifugation through a discontinuous sucrose density gradient. Pigment composition was subsequently characterized by spectrophotometry. Vegetative thalli of the two strains grown together for six months in the laboratory resulted in different pigment profiles. Two pigmented phycobilisome bands appeared in the sucrose gradient of the wild-type alga, a purple coloured one, and a pink one, whereas only a single blue band appeared in the gradient of the green mutant. Spectrophotometric and fluorescence analyses identified the phycobiliprotein composition of the purple band as the typical phycoerythrin-phycocyanin-allophycocyanin complement in the wild-type, but there was no detectable phycoerythrin present in the blue band of the green mutant. Sodium dodecyl sulphate, preparative polyacrylamide gel electrophoresis analysis confirmed the presence of allophycocyanin subunits in all extracts, but firm evidence of an R-phycoerythrin linker polypeptide in the blue band was missing. These results highlight the ability of C. crispus to adapt to a phycoerythrin deficiency by adjusting light harvesting pigment ratios.

Changes of PBP Quantity and FNR Activity by Light Wavelengths in Anabaena variabilis (光波長에 따른 Anabaena variabilis 의 Phycobiliprotein 含量 및 FNR 活性度 變化)

  • Kim, Jung-Suk;Chang, Nam-Kee
    • The Korean Journal of Ecology
    • /
    • v.14 no.1
    • /
    • pp.87-99
    • /
    • 1991
  • Changes of phycobiliproteins(PBP) quantity and ferredoxin-NADP reductase(FNR) activity were investigated in various light illuminated cyanobacteria, Anabaena variabilis. PBP components were increased under blue light illumination, whereas decreased under red light illumination. PBP contents were twofolds in blue light than in red light. In view of the PBP composition, allophycocyanin(APC) in red light was higher 5.5% and phycoerythrocyanin(PEC) in blue light was higher 2.2% than in white light-illuminated PBP. It was suggested that PBP changes in bule light be the results of regulation of photosysthetic efficiency and protection of photosystem, whereas PBP changes in red light be effected by adaptation of adequate harvesting of light energy in photosystem. Changes of FNR activity were highest in red light, and sequenced lower to blue light and green light. It means that light-dependent production rate of NADP is the highest in red light. The difference of values was larger than that of values in comparison of red and blue light. It was suggested that increasing of FNR activity be due not to the function of isozyme, but to the synthesis of enzymes. Because of NAD/NADP regulation-effect to metabolism, it was considered that FNR activity might influence the metabolism indirectly and explain the probability of regulation in pathways of key enzyme activation. FNR activity was directly proportional to intensity of light. Optimum temperature and pH were about 25℃ and 7.5, respectively.

  • PDF

Steady state and Lifetime Measurements of Primary Fluorescence from Phytoplanktons (식물플랑크톤 색소의 형광 특성과 lifetime 측정)

  • PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.397-404
    • /
    • 1991
  • The steady state and decay characteristics of primary fluorescenece of phytoplanktons including Cyanophyceae and Cryptophyceae were investigated in vivo. At 580-640 nm region, fluorescence emission spectra were obtained from all algae examined. The observed fluorescence emission maxima were similiar$(\pm3\;nm)$ except Synechocorcus sp. (SYN). Considered $\lambda_{max}$ of emission spectra of phycobiliproteins and the excitation spectra with $\lambda_{max}=540-560nm$, it seems to be originated from biliproteins. Fluorescence lifetimes $(\tau)$ and decay curves were compared with standard solution of candidate organic compounds, b-phycoerythrin. The $\tau$ values obtained for phytoplankton with $\lambda_{max}=580nm$ were different depending upon the species of algae. The observed $\tau$ values were ranged from 1.39 ns to 1.95 ns. These are considerably shorter than $\tau(3.23\;us)$ for standard solution of b-phycoerythrin. The reduction of $\tau$ for phycoerythrin in vivo seems to be originated from effective energy transfer system between Chl. a and phycobiliprotein in intact cell. There are subtantial differences in fluorsecence spectra and lifetimes at the class level. At the species level, differences seems to be much smaller. The result of experiment suggests that measurement of fluorescence lifetimes may be helpful in the rapid characterization of algae. Direct application will likely be found in combination with the measurement of other luminescence parameters.

  • PDF