• 제목/요약/키워드: Photovoltaic or Solar Cell

검색결과 126건 처리시간 0.032초

신규 유기염료를 적용한 염료감응 태양전지의 광전변환거동 (Synthesis and photovoltaic performance of novel ionic dyes for the dye-sensitized solar cells)

  • 정미란;이정관;김상아;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.120.2-120.2
    • /
    • 2011
  • The improvement of solar energy-to-electricity conversion efficiency has continued to be an important research area of dye-sensitized solar cells (DSSCs). The mechanism of DSSCs is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2 or ZnO. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO band gaps of dye moleculed in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for DSSC. We believe that practically useful organic dye photosensitizers can be produced by exploiting electron donor/acceptor system with proper length of ${\pi}$-conjugation in a chromophore to control the absorption wavelength and enhance the photovoltaic performance. In this research, We designed and synthesized organic dyes also investigated the photoelectrochemical properties of a series of ionic dyes in DSSCs.

  • PDF

박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절 (Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness)

  • 백태현;홍지화;임기조;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.108-112
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 90 % of the market, despite the development of a variety of thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon photovoltaic remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner thickness of silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials of different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With lower paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 130 micron thickness of the wafer even though the conversion efficiency decrease of 0.5 % occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al paste application.

  • PDF

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Improved Carrier Tunneling and Recombination in Tandem Solar Cell with p-type Nanocrystalline Si Intermediate Layer

  • Park, Jinjoo;Kim, Sangho;Phong, Pham duy;Lee, Sunwha;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2020
  • The power conversion efficiency (PCE) of a two-terminal tandem solar cell depends upon the tunnel-recombination junction (TRJ) between the top and bottom sub-cells. An optimized TRJ in a tandem cell helps improve its open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE). One of the parameters that affect the TRJ is the buffer layer thickness. Therefore, we investigated various TRJs by varying the thickness of the buffer or intermediate layer (TRJ-buffer) in between the highly doped p-type and n-type layers of the TRJ. The TRJ-buffer layer was p-type nc-Si:H, with a doping of 0.06%, an activation energy (Ea) of 43 meV, an optical gap (Eg) of 2.04 eV, and its thickness was varied from 0 nm to 125 nm. The tandem solar cells we investigated were a combination of a heterojunction with intrinsic thin layer (HIT) bottom sub-cell and an a-Si:H (amorphous silicon) top sub-cell. The initial cell efficiency without the TRJ buffer was 7.65% while with an optimized buffer layer, its efficiency improved to 11.74%, i.e., an improvement in efficiency by a factor of 1.53.

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

고집광 태양광 발전을 위한 렌즈 및 광 파이프 특성 시뮬레이션 (Simulation of Characteristics of Lens and Light Pipe for High Concentration Solar PV System)

  • 유광선;신구환;차원호;명로훈;김용식;정호윤;김동균;강기환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.282-286
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. We performed rigorous ray tracing simulation of the flat Fresnel lens and light-pipe. The light-pipe can play imporatant roles of redistributing solar energy at the solar cell and increase the mechanical tolerance so that it can increase the lifetime of the high-concentration solar PV system and decrease the cost of manufacturing. To investigate the sensitivity of the solar power generated by the concentrated solar PV according to the performance of lens and light pipe, we performed raytracing and executed a simulation of electrical performance of the solar cell when it is exposed to the non-uniform illumination. We could conclude that we can generate 95 % or more energy compared with the energy that can be generated by perfectly uniform illumination once the total energy is given the same.

  • PDF

PV moudule의 출력손실 저감요인 분석 (A Study for reduction of the power loss of PV modules)

  • 이상훈;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.45-50
    • /
    • 2011
  • The efficiency of solar cell was about 4[%] in initial stage of photovoltaic industry, but it has quite a lot of efficiency through technology advances. Today, the efficiency of c-Si solar cells is about 17 to 19[%] and the efficiency of PV modules is about 14 to 15 [%]. We called that electrical losses occurred in the Conversion of solar cells to PV modules are CTM loss(Cell To Module loss), the CTM loss typically has a value of about3~5[%]. The more efficiency of solar cell increase, differences are larger because the efficiency decrease owing to physical or technical problems occurred in the Conversion of solar cells to PV modules. In this study, the power loss factors occurred in the Conversion of solar cells to PV modules are analyzed and it is proposed that how to reduce losses of the PV module. The types of power loss factor are (1)losses of front glass and encapsulant(generally EVA sheet), (2)losses by sorting miss, (3)losses by interconnection, (4)losses by the field aging of PV modules. In further study, experimental and evaluation will be conducted to make demonstrate for proposed solutions.

  • PDF

2011년 나주시 태양광 발전 시스템의 운전특성 (2011, The Analysis Operating Characteristics of Photovoltaic System in Naju-city)

  • 현정우;이남진;차인수;김동묵;최정식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.359-363
    • /
    • 2011
  • Building-integrated photovoltaics(BIPV)are increasingly incorporate into new domestic and industrial buildings as a proncipal or ancillary source of electrical power, and are on of the fastest growing segments of the photovoltaic industry. This paper presents operational features analysis and PCS(Power conversion System) factors of grid-connected 30kW BIPV on library of Dongshin University. The data consisted of insolation, Temperature, solar-cell performance and inverter performance are collected by IVIsion web monitoring system and analyzed. The analyzed data gave this paper effect elements of optimal operation.

  • PDF

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계 (Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.137-142
    • /
    • 2021
  • 태양광발전 가로등은 태양광에너지를 사용하여 2차전지에 충전 후 램프를 통해 야간조명에 활용하는 시스템으로서 부하 단 LED 가로등을 설치하여 독립형 또는 계통연계형으로 구성할 수 있다. 태양전지모듈을 통해 발전된 에너지는 충방전 제어장치를 통해 2차전지에 충전 후 일사량 감시에 따른 발전전압과 충전전압의 비교, 또는 일몰, 일출 후 특정시간 설정으로 LED 가로등을 점등 소등을 할 수 있다. 따라서 이러한 내용을 기반으로 본 논문에서는 신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계 및 제작을 통해 대학의 학생들에게 1) 태양광을 포함한 신재생에너지를 이용하여 전기에너지로 활용하는 에너지 변화의 흐름 이해, 2) 신재생에너지 이해 및 관련 제품의 기초설계와 제작 응용력 함양, 3) 전력변환을 통한 신재생에너지 활용과 하드웨어 제작을 통한 실습과 분석력 강화를 심어줄 수 있다.