• Title/Summary/Keyword: Photovoltaic monitoring system

Search Result 141, Processing Time 0.038 seconds

Performance Evaluation Method of Grid-Connected PV System (계통연계형 PV시스템의 성능특성 평가방법)

  • So, Jung-Hun;Yu, Byung-Gyu;Jung, Young-Seok;Hwang, Hye-Mi;Yu, Gwon-Jong;Choi, Ju-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1245-1246
    • /
    • 2007
  • In present, as the various PV system have been installed and disseminated, research and development of photovoltaic(PV) system is the most important issues to establish usefulness of design, installation, supervision and maintenance of PV system with performance improvement. This paper presents evaluation and analysis method for estimating performance and losses of PV system and components using monitoring data.

  • PDF

Performance Analysis of Balcony BIPV System (발코니형 BIPV시스템의 성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;So, Jung-Hoon;Yu, Gwon-Jong;Park, Kyung-Eun;Lee, Kil-Song;Suh, Seung-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.208-209
    • /
    • 2007
  • Photovoltaic(PV) based electricity production is pollution-free at the local as well as the global level, it does not emit greenhouse gases, it dose not dip into finite file resources and it can be easily integrated into the urban environment, close to major consumption needs. So BIPV(Building-Integrated Photovoltaics) system have been increased around the world. This paper presents measuring and analyzing performance of balcony BIPV system which have been installed and monitoring. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. By the results, it is very important to develop optimal design for the balcony PV system.

  • PDF

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

Smart Monitoring System to Improve Solar Power System Efficiency (태양광 발전시스템 효율향상을 위한 스마트 모니터링 시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.219-224
    • /
    • 2019
  • The number of solar power installation companies including domestic small scale (50kW or less) is increasing rapidly, but the efficient operation system and management are insufficient. Therefore, a new type of operating system is needed as a maintenance management aspect to maximize the generation amount in the current state rather than the additional function which causes the increase of the generation cost. In this paper, we utilize Big Data and sensor network to maximize the operating efficiency of solar power plant and analyze the expert system to develop power generation prediction technology, module unit fault detection technology, life prediction of inverter components and report technology, maintenance optimization And to develop a smart monitoring system that enables optimal operation of photovoltaic power plants such as development of algorithms and economic analysis.

Installation and Performance Evaluation of 100kWp PV System in Tibet (중국 티베트지역의 100kWp급 태양광발전시스템 실증연구)

  • Kim Seok-Ki;Yun Jae-Ho;Lee Jeong-Chul;Ahn Se-Jin;Yoon Kyung-Hoon;Song Jin-Soo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.16-22
    • /
    • 2006
  • This paper present the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea.

  • PDF

An Implementation of Photovoltaic Web Monitoring System based Web Services (웹서비스 기반의 태양광 발전 웹모니터링 시스템 구현)

  • Yoo, Jea-Kyu;Ryu, Yeong-Hyeon;Kim, Young-Roc
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1381-1383
    • /
    • 2010
  • 웹서비스는 표준 프로토콜인 HTTP를 이용하기 때문에 방화벽의 제약이 없어서 어디서나 실시간으로 통신하여야 하는 모니터링 시스템 특성상 꼭 필요한 기술이다. 또한, XML로 기술된 SOAP 메시지는 플랫폼 독립적이고, 시스템 확장과 통합에 유리하다. 본 논문에서 구현한 웹모니터링 시스템은 웹서비스를 이용하여 설치가 용이하고, 인터넷을 통해 원격지의 태양광 발전 시스템을 관리, 감시하는데 제약이 없으며, 신재생에너지 산업 통합에 적용될 수 있다.

The Tracking Photovoltaic System by One sensor Type (One sensor방식의 추적식 PV System)

  • Ko, Jae-Hong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4733-4739
    • /
    • 2012
  • While traditional two-axis tracking systems with double sensors had been using two sensors to control azimuth and elevation angle of the sun so that a solar cell module would make a normal line with the sun, this paper proposed a new two-axis system that can achieve the same performance with only one sensor in it. It is Two-axis tracking system that control azimuth and elevation to control to be reduced for solar cell module as proposed tracking system uses 1 sensors and the sun always forms normal. Two-axis tracking system of one sensor method that propose in paper that could reduce electric power consumption and sees than fixed type preventing action and the most efficient driving and needless drive could confirm that generation efficiency of about 23 [%] increases. To heighten efficiency of solar cell doing to receive more sunlights chasing the sun, done tracking device have proceeded a lot of studies in large size way. Therefore, is expected that will do big part in the sun tracking supply through utility study about persistent generation efficiency constructing monitoring system of the sun tracking of this paper.

FPGA-based Centralized Controller for Multiple PV Generators Tied to the DC Bus

  • Ahmed, Ashraf;Ganeshkumar, Pradeep;Park, Joung-Hu;Lee, Hojin
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.733-741
    • /
    • 2014
  • The integration of photovoltaic (PV) energy sources into DC grid has gained considerable attention because of its enhanced conversion efficiency with reduced number of power conversion stages. During the integration process, a local control unit is normally included with every power conversion stage of the PV source to accomplish the process of maximum power point tracking. A centralized monitoring and supervisory control unit is required for monitoring, power management, and protection of the entire system. Therefore, we propose a field-programmable gate array (FPGA) based centralized control unit that integrates all local controllers with the centralized monitoring unit. The main focus of this study is on the process of integrating many local control units into a single central unit. In this paper, we present design and optimization procedures for the hardware implementation of FPGA architecture. Furthermore, we propose a transient analysis and control design methodology with consideration of the nonlinear characteristics of the PV source. Hardware experiment results verify the efficiency of the central control unit and controller design.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.

A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems (독립형 태양광 발전소의 연 축전지 모니터링장치 개발)

  • Moon, Chae-Joo;Kim, Tae-Gon;Chang, Young-Hag;Kjm, Eui-Sun;Lim, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.