• Title/Summary/Keyword: Photovoltaic modules

Search Result 362, Processing Time 0.026 seconds

Sensitive analysis of design factor for the optimum design of PVT system

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2015
  • Purpose: Recently, renewable energy system has been widely used to reduce the energy consumption and CO2 emission of building. A photovoltaic/thermal(PVT) system is a kind of efficient energy uses, which is combined with photovoltaic module and solar thermal collector. PVT system removes heat from PV module by through thermal fluid to raise the performance efficiency of the PV system. However, though PVT system has the merit of the improved efficiency in theoretical approach, there have been few performance analysis for PVT system using the dynamic energy simulation. In this study, in order to establish the optimum design method of this system, simulation was conducted by using individual system modules. Method: For the dynamic simulation, TRNSYS17 was used and local weather data was utilized. Furthermore, the system performance in various installation condition was calculated by case studies. Result: As a result, the amount of electric generation and heat production in each case was found by the simulation. The gap of system performance was also evident according to the installation condition.

Consideration of Electrical Properties in Field-aged Photovoltaic Module (태양전지모듈의 노화현상에 따른 전기적 특성 고찰)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, HyungKeun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1289-1295
    • /
    • 2004
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 6 years shows around 16 % drop of electrical properties due to the interconnect degradation and PV module passed 18 years has been found to drop of around 20 % mainly by the encapsulant discoloration. Furthermore the difference between low and high temperature of PV array at hot spot goes up to 3$0^{\circ}C$ and it leads to interconnect degradation. On the other hands, the temperature difference was observed to be around 15$^{\circ}C$ at the encapsulant discoloration spot of PV array.

The Study of Power Conditioning System for Photovoltaic Power Generation System (태양광 발전용 전력변환장치에 관한 연구)

  • Ryu S.P.;Jeon S.B.;Min B.G.;Seo K.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.961-964
    • /
    • 2003
  • Recently, because of the depletion of fossil fuels and the environmental pollution by using fossil fuels and atomic power generation, the interests concerning of new and renewable energy resources are rising rapidly. In this study, the 3kWP photovoltaic power generation system is realized to verify the performance of the PCS developed. The photovoltaic array used in this system is composed of 60 modules of 50Wp capacity. The developed system is tested and the experimental results show the excellent electrical characteristics.

  • PDF

A Study on the Eco-environmental Blind using BIPV Module Applications (BIPV Module을 적용한 친환경 전동 블라인드에 관한 연구)

  • Shin, Hyun-Woo;Yoon, Jong-Ho;Lee, Kil-Song;Kim, Byeong-Man;Jang, Jin-Ho;Kang, Gi-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.105-106
    • /
    • 2008
  • In korea, PV business has been growing fast since 2000. There are many ways to build PV System. Among them, BIPV(Building Integrated Photovoltaic) System using PV Modules as external wall has been carried out research on and invested much. Thus I will suggest another way to apply the BIPV System. This System is Eco System designed to consume little energy working the blind by the power that the BIPV System generates. I will show you how to make and apply this BIPV System.

  • PDF

A Study on the Photovoltaic System Inverter Sizing (태양광발전시스템 인버터 용량 산정에 관한 연구)

  • Lee, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.

Analysis of Roof Integrated Photovoltaic Module's Performance with Insulation Hybrid Structure Layer (단열복합 구조에 따른 지붕일체형 태양전지모듈의 성능 분석)

  • Kang, Gi-Hwan;Kim, Hyun-Il;Park, Kyung-Eun;Yu, Gwon-Jong;Yi, So-Mi
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1220-1221
    • /
    • 2007
  • Building-integrated photovoltaic(BIPV) perform traditional architectural function of walls and roof while also generating electricity. But most of the absorbed solar energy appears passively as heat, raising the temperature of cells and reducing the efficiency with which the active part is converted into electricity. Therefore this paper presents the comparison of electrical, architectural and thermal performance of roof integrated photovoltaic(PV) modules, which is composed of different hybrid structure layer such as urethane form, waffle stud etc.

  • PDF

Observation of Electrical Properties in Field-aged Photovoltaic Module (Field aged 태양전지모듈의 노화현상에 따른 전기적 특성 관찰)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.28-32
    • /
    • 2004
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 6 years shows around 16% drop of electrical properties due to the interconnect degradation and PV module passed 18 years has been found to drop of around 20% mainly by the encapsulant discoloration. Furthermore the difference between low and high temperature of PV array at hot spot goes up to $30^{\circ}C$ and it leads to interconnect degradation. On the other hands, the temperature difference was observed to be around $15^{\circ}C$ at the encapsulant discoloration spot of PV array.

  • PDF

Case Study on 12kW Building Integrated Photovoltaic System (12kW급 건물일체형 태양광발전시스템 사례분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;So, Jung-Hoon;Yu, Gwon-Jong;Kim, Jun-Tae;Lee, Kil-Song
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

Development of Building Integrated PV(BIPV) module for the replacement of commercial building envelope materials (건물외피용 태양광발전 BIPV 모듈 개발 연구)

  • Yoon, Jongho;Kim, J.I;Lee, K.S.;Yu, G.J.
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 2004
  • As Building Integrated Photovoltaic(BIPV) system replaces the conventional building finishing materials with PV modules, two function of electricity generation and building envelope can be expected. Therefore BIPV can be a good alternative technology for the 21 century environment-friendly buildings. The objective of this paper is to develope BIPV modules for a commercial buildings of which structure is mainly light-weight, curtain wall system. Two types of module are developed for a opaque part and a transparent part of building envelope. Current technology level and market status of Korea determines the configuration of developed BIPV modules. Architectural considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully reflected from the early stage of BIPV module design. Especially the survey result of current building envelope materials determines the size of unit BIPV modules and a unique cladding method for PV module installation is developed. Trial product of BIPV modules and cladding hardwares are manufactured and sample construction details for a demonstration building are proposed.

The Thermal Performance Comparison of BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 BIPVT 집열기 열적 실험성능 비교)

  • Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • The temperature of PV modules that integrated into building facades or roof increases that could reduce the electrical efficiency of the PV system. In order to incresae PV system's efficiency it is very important to remove the heat from the PV modules. For this purpose, hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The solar collector utilizing this thermal effect is called photovoltaic-thermal(PVT) solar collector. This paper compares the experimental performance of building-integrated PVT collectors that applied on building roof and facade. There are two different case: a roof-integrated PVT type and a facade-integrated PVT type. The experimental results show that the collected thermal energy of the roof-integrated type was 24% higher, compared to that of the facade-integrated.

  • PDF