• Title/Summary/Keyword: Photovoltaic energy

Search Result 1,930, Processing Time 0.025 seconds

National Certified License Tests for the Facility Management of New and Renewable Energy (Photovoltaic Cell) (신재생에너지 (태양광) 설비 국가 공인 자격증 시험)

  • Jo, Min-Jung;Hwang, Un-Jei;Park, Rei-Hyan;Jo, Dong-Hyun;Kim, Jong-Do;Park, Eun-Hye;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.126-139
    • /
    • 2013
  • New national certified license tests for the facility management of new and renewable energy is given from this year. There are three national certified licenses including craftsman, industrial engineer and engineer. The subjects for the craftsman are photovoltaic facility for written exam and practical business of photovoltaic facility for writing exam. The subjects for the industrial engineer are theory, construction, management and law of the photovoltaic system for written exam and practical business of photovoltaic system for writing exam. The subjects for the engineer add one more subject compared with the industrial engineer, such as design of photovoltaic system. The first tests were given in september 28 in this year. The tests will be given three in 2014.

A Study on the Present State of Duty Performance According to the RPS System and Improvement Plan (RPS제도 시행에 따른 의무이행 현황 분석 및 개선방안 연구)

  • Kim, Jun-Hui;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.98-104
    • /
    • 2013
  • At the moment, in Korea, over 90% of energy resources depend on imports, and nearly 60% of electric energy is produced using fossil fuel. Therefore, the government adopted the Climatic Change Convention and has implemented the RPS system since 2012 to actively cope with the dependence on imported energy, and to grow and expand the new renewable energy industry. This study examined the performance results of mandatory supply of solar photovoltaic energy and non-solar photovoltaic energy assigned to providers and the present state after implementation of the RPS system. As a result, the achievement rate in 2012 was 64.7%. Especially, solar photovoltaic energy showed a high achievement rate of 95.7%, whereas non-solar photovoltaic energy showed a low achievement rate of 63.3% due to several problems and was highly dependent on the government. In 2013, the burden of each provider has increased due to more mandatory supply and addition of unfulfilled supply of 2012, and the separate mandatory supply of solar photovoltaic energy established for protection of the solar photovoltaic market is restricting investment. Therefore, there is a need to assign mandatory supply in consideration of the available amount of each new renewable energy.

Operationg Characteristics of 50kW Utility Interactive Photovoltaic System (목포대학교 기숙사 30[kW]급 태양광발전시스템 발전특성)

  • Moon, Chae-Joo;Lim, Joung-Min;Cheang, Eui-Heang;Park, Sang-Jin;Park, Gui-Yeol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.53-56
    • /
    • 2008
  • A photovoltaic panel is a device that, through the photovoltaic effect, converts luminous energy into electric energy. Photovoltaic generation system used infinity of solar energy, cost of fuel is needless and there in no air pollution or waste occurrence. This paper summarizes the results of these efforts by offering a photovoltaic system structure in 30[kW] large scale applications installed in Mokpo National University dormitory roof. The status of photovoltaic system components, are inter-connection and safety equipment monitoring system will be summarized as this article. This describes configuration of utility interactive photovoltaic system which generated power supply for dormitory. In this paper represent 30[kW] utility photovoltaic system examination result.

  • PDF

Distance Between a Wind Turbine and a Photovoltaic Module in a Wind-Photovoltaic Hybrid Generation System (태양광-풍력 하이브리드 발전기에서 태양전지모듈과 풍력발전기 이격거리)

  • Woo, Sang-Woo;Kim, Hong-Woo;Kim, Sung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.58-64
    • /
    • 2009
  • This aim of the study is to demonstrate the effect of a photovoltaic module installed on a small wind-photovoltaic hybrid generation system. Computational fluid dynamics(CFD) is used to interpret the velocity field around the photovoltaic module and the blade areas of a wind turbine. According to the simulation results, it is obvious that x_velocity and y_velocity varies very significantly with time near the photovoltaic module. This would lead to an increase of periodic wind load caused by flow separation at the edge of the photovoltaic module. This study discusses the flow characteristics in term of velocity and frequency analysis. Moreover we suggest a distance between a photovoltaic module and a wind turbine to avoid partially the negative effect caused by the photovoltaic module.

Performance of Photovoltaic Module according to Non-Uniform Azimuth (비동일한 방위각에 의한 PV모듈의 발전성능)

  • Kim, Hyun-Il;Park, Kyung-Eun;Lee, Ki-Ok;Kang, Gi-Hwan;Yu, Gwon-Jong;Suh, Sung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.303-308
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. However many PV systems are not installed in suitable part which is concerned about geometrical factor. It is generally recognized that the actual output of PV system in field is a function of orientation, tilt angle, irradiance, temperature, soiling and various system-related losses. Thus this paper shows that a experimental result of PV modules(A group) with uniform azimuth angle and PV modules(B group) with non-uniform azimuth angle. As a result, the electrical output of B group is decreased 48.8% as compared with electrical output of A group.

  • PDF

A Study on The development status and future of Photovoltaic Urban Project (태양광발전 도시 프로젝트의 개발현황과 발전방향 고찰)

  • Kim, Hyun-Il;Suh, Seung-Jik;Park, Kyung-Eun;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.87-92
    • /
    • 2008
  • Buildings are responsible for approximately 50% of current carbon dioxide emissions. Energy planning at a town and city scale needs a strategic approach, supported by strong planning policies. The purpose of this study was to investigate the urban scale grid-connected photovoltaic(PV) system for urban residential and commercial sector applications. The integration of PV technology into roof of houses is an approach that is being championed in Germany, Japan and United states etc. In the Korea, PV roofing systems already are given the large number of houses which are projected to be built by 2012. However unlike germany and Japan, urban scale grid-connected PV system is not yet installed. The solar city which is installed building-integrated photovoltaic system is available to use of renewable energy sources such as solar to meet demand, instead of fossil fuels, with the goal of realizing an ecologically oriented energy supply.

Performance Parameters of a Bifacial PV Device and Accurate Measurement Method for the Parameters (양면형 태양광발전 소자의 성능변수 및 이에 대한 정확한 측정방법)

  • Ahn, Seungkyu;Ahn, SeJin;Eo, Young Joo;Yoo, Jinsu;Park, Joo Hyung;Kim, Kihwan;Cho, Ara;Cho, Jun-Sik;Yun, Jae-Ho;Shin, Donghyup;Jung, Inyoung;Gwak, Jihye
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.89-94
    • /
    • 2017
  • We have examined the issues on the measurement of bifacial photovoltaic(PV) devices that should be considered in order to ensure a measurement accuracy beyond a certain level and the comparability between the bifacial PV devices. Based on the results of various experiments and previous studies, solutions for these measurement issues are suggested. The most significant technical issues in the performance measurement of the bifacial PV devices are 1) elimination of the effect due to the light reflection on the sample holder surface and 2) the measurement of the expected power generation gain in outdoor operation. The effect due to the light reflection on the sample holder surface can be eliminated by using an anti-reflective sample holder. In case of a reflective sample holder, if the bifacial device have a linear characteristic with respect to the irradiance of incident light, it has been confirmed (through some previous studies and additional experiment) that exact measurement results can be obtained by the correction of the measurement data. In addition, it was also confirmed that the expected power generation gain in the outdoor operation can be obtained by three different methods along with the basic concepts of the bifaciality coefficient, the albedo, and the effective front irradiance.

Prediction of End of Life Photovoltaic Modules with Feed in Tariff (발전차액제도가 고려된 태양광 폐모듈 발생량 예측)

  • Park, Jongsung;Lim, Cheolhyun;Kim, Wooram;Park, Byungwook;Lee, Jin-seok;Lee, Sukho
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2020
  • In this study, we predict the generation of end-of-life photovoltaic modules when Feed in Tariff applied, in Republic of Korea. Based on the installation of photovoltaic modules, we prepared three different senarios in order to estimate the generation of end-of-life photovoltaic modules. The senarios are i) early worn-out, ii) mid worn-out and iii) late-worn out senario. We selected the mid worn-out senario to estimated the amount of end-of-life photovoltaic modules in this study. Establishment of the end-of-life module generation scenario predicted generation of end-of-life photovoltaic module, and forecasted generation amount of end-of-life module to which Feed in Tariff was applied in consideration of installed photovoltaic modules installed by Feed in Tariff support. The generation of Feed in Tariff-applied end-of-life modules increased from 2021 to 2025 compared to without Feed in Tariff, and since then, the Feed in Tariff-applied end-of-life modules were generated as waste modules during the relevant period (2021 ~ 2025).

A Study on the Optimization of New Renewable Energy Systems in Public-Purpose Facilities (공공용 업무시설의 신재생에너지시스템 최적화 연구)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.95-104
    • /
    • 2013
  • This study set out to devise an optimized system to take into account life cycle cost(LCC) and ton of carbon dioxide($TCO_2$) by applying the weighted coefficient method(WCM) to "public-purpose" facility buildings according to the mandatory 5% and 11% of new renewable energy in total construction costs and anticipated energy consumption, respectively, based on the changes of the public obligation system. (1) System installation capacity is applied within the same new renewable energy facility investment according to the mandatory 5% of new renewable energy in total construction costs. Both LCC and $TCO_2$ recorded in the descending order of geothermal, solar, and photovoltaic energy. The geothermal energy systems tended to exhibit an excellent performance with the increasing installation capacity percentage. (2) Optimal systems include the geothermal energy(100%) system in the category of single systems, the solar energy(12%)+geothermal energy(88%) system in the category of 2-combined systems, and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system and the photovoltaic energy(12%)+solar energy(25%)+geothermal energy(63%) system in the category of 3-combined systems. (3) LCC was the highest in the descending order of photovoltaic, geothermal and solar energy due to the influences of each energy source's correction coefficient according to the mandatory 11% of new renewable energy in anticipated energy consumption. The greater installation capacity percentage photovoltaic energy had, the more excellent tendency was observed. $TCO_2$ recorded in the descending order of geothermal, photovoltaic and solar energy with the decreasing installation capacity of photovoltaic energy. The greater installation capacity percentage a geothermal energy system had, the more excellent tendency it demonstrated. (4) Optimal systems include the geothermal energy(100%) system in the category of single systems, the photovoltaic energy(62%)+geothermal energy(38%) system in the category of 2-combined systems, and the photovoltaic energy(50%)+solar energy(12%)+geothermal energy(38%) system and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system in the category of 3-combined systems.

Status of Photovoltaics in the world (세계 태양광발전산업 현황)

  • Kang, Gi-Hwan;Lee, Chang-Koo;Park, Kyung-Eun;Kim, Hyun-Il;Yu, Kwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.314-319
    • /
    • 2009
  • The photovoltaic(PV) industry has been growing worldwide. Recently, the PV industries not also in the traditional PV advanced countries but also in other countries are rapidly growing. Especially, China has become the largest supplier in the world PV supply side since 2007. Both the world PV supply and demand rose steadily in 2008 like recent bumper years. In 2008, the world solar cell production reached 6.85GW~7.91GW presenting growth of 85% over the previous year. On the demand side, 81 countries contributed to the 5.95GW presenting growth of 110% over the previous year.

  • PDF