• Title/Summary/Keyword: Photovoltaic device

Search Result 373, Processing Time 0.032 seconds

Properties of the Exciton Blocking Layer in Organic Photovoltaic cell (유기 광기전력 소자의 엑시톤 억제층 특성)

  • Oh, Hyun-Seok;Lee, Ho-Shik;Park, Yong-Phil;Lee, Won-Jae;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.20-21
    • /
    • 2008
  • Photovoltaic effects in organic solar cell were studied in a cell configuration of ITO/PEDOT:PSS/CuPd(20nm)/$C_{60}$(40nm)/BCP/Al(150nm) at room temperature. Here, the BCP layer works as an exciton blocking layer. The exciton blocking layer must transport electrons from the acceptor layer to the metal cathode with minimal increase in the total cell series resistance and should absorb damage during cathode deposition. Therefore, a proper thickness of the exciton blocking layer is required for an optimized photovoltaic cell. Several thicknesses of BCP were made between $C_{60}$ and Al. And we obtained characteristic parameters such as short-circuit current, open-circuit voltage, and power conversion efficiency of the device under the illumination of AM 1.5.

  • PDF

Photovoltaic Effects in Organic Semiconductor $CuPc/C_{60}$ depending on Cathodes ($CuPc/C_{60}$ 구조 유기 반도체에서의 음전극의 종류에 따른 광기전 효과 연구)

  • Oh, Hyun-Seok;Jang, Kyung-Wook;Lee, Sung-Ill;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.181-184
    • /
    • 2004
  • Organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost high-energy conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar-cell devices based on copper-phthalocyanine(CuPc) as a donor(D) and fullerene($C_{60}$) as an electron acceptor(A) with doped charge transport layers, and BCP as an exciton blocking layer(EBL). We have measured photovoltaic characteristics of the solar-cell devices using the xenon lamp as a light source.

  • PDF

A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration (박막의 조성비율에 따른 유기태양전지의 효율성 연구)

  • Kim, Seung-Ju;Lee, Dong-Keun;Park, Jae-Hyung;Gong, Su-Cheol;Kim, Won-Ki;Ryu, Sang-Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF

Photovoltaic Characteristic of Thin Films Based on MEH-PPV/DFPP Blends

  • Mun, Ji-Seon;Kim, Su-Hyeon;Lee, Jae-U;Lee, Seok;Kim, Seon-Ho;Kim, Dong-Yeong;Choe, Hye-Yeong;Yun, Seong-Cheol;Lee, Chang-Jin;Kim, Yu-Jin;Lee, Geung-Won;Byeon, Yeong-Tae
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.28-29
    • /
    • 2005
  • 본 논문에서는 MEH-PPV와 DFPP의 폴리머 물질을 이용하여 photovoltaic device가 제작되었고, 그림 1에 두 물질의 분자 구조가 보여진다. Photovoltaic cell의 전기-광학적 특성은 활성층의 폴리머 물질에 의해 결정된다. 이러한 특성을 알아보기 위해서 홉수 스펙트럼이 측정되었다. DFPP는 chloroform, chlorobenzen, THF, acetone에 잘 녹았으며, 본 논문에서는 chloroform이 용매로 사용되었다. 제작 공정은 다음과 같다. 인듐 주석 산화물 (ITO)이 증착된 유리기판은 photolithography 공정을 거친 후, 왕수(HNO$_{3}$ + HCL)로 식각됨으로서 전극의 패턴이 제작되었다. 그리고 ITO 전극 패턴 된 유리기판 위에 PEDOT (CH8000, Baytron)이 코팅된 후 Ar이 주입되는 Convection Oven을 이용하여 120$^{\circ}$C에서 2시간 동안 열처리되어 수분이 제거되었다. 활성층에는 MEH-PPV와 DFPP가 9:1과 2.33:1로 혼합된 폴리머가 사용되었고, 이것은 0.3 %w.t.가 되도록 chloroform에 넣어 5시간 동안 스핀바를 돌려서 용해되었다. 이 용액은 ITO 전극 패턴이 형성된 글라스 위에 3000 rpm으로 45 초간 스핀코팅 되었다. 이 때 얻어진 유기물 박막층은 80$^{\circ}$C의 Ar이 주입되는 convection oven에서 3시간 동안 경화되었다. 경화된 단층 유기물 박막층 위에 Li-Al이 1000 ${\AA}$의 두께로 증착되어 전극이 형성되었고, 이후 질소가 채워진 globe box에서 소자는 encapsulation되어 산소와 수분에 대한 영향으로부터 차단되었다. 상기의 공정으로 제작된 소자의 박막구조는 그림 2에서 보여진다. 그림 3은 MEH-PPV와 DFPP를 혼합했을 때의 흡수 스펙트럼이다. 최대 흡수 파장은 511 nm였다. 그리고 photovoltaic cell의 V-I 특성 결과가 그림 4와 같이 측정되었다. 측정에서는 300${\sim}$700 nm의 파장대를 갖는 태양광 모사계가 사용되었고, 셀의 면적은 10 mm$^{2}$였다. 그림 5의 I-V 특성으로부터 MEH-PPV와 DFPP가 9:1 로 혼합했을 때보다 2.33:1 로 혼합했을 때, photovoltaic device의 효율이 향상됨을 확인할 수 있다. 빛이 75 mW/cm$^{2}$ 의 세기로 조사될 때 9:1과 2.33:1로 혼합된 소자의 open circuit voltage (V$_{oc}$)는 비슷하지만, short circuit current Density (J$_{sc}$)는 각각 -1.39 ${\mu}$A/cm$^{2}$ 와 -3.72${\mu}$A/cm$^{2}$ 로 약 2.7배 정도 증가되었음을 볼 수 있다. 이러한 결과를 통해 electron acceptor인 DFPP의 비율이 높아질수록 photovoltaic cell의 conversion efficiency가 더 크게 됨을 확인할 수 있다. 그러므로 효율이 최대가 되는 두 폴리머의 혼합 비율이 최적화되는 조건을 찾는 것은 매우 중요한 연구가 될 것이다.

  • PDF

Improving Device Efficiency for n-i-p Type Solar Cells with Various Optimized Active Layers

  • Iftiquar, Sk Md;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.70-73
    • /
    • 2017
  • We investigated n-i-p type single junction hydrogenated amorphous silicon oxide solar cells. These cells were without front surface texture or back reflector. Maximum power point efficiency of these cells showed that an optimized device structure is needed to get the best device output. This depends on the thickness and defect density ($N_d$) of the active layer. A typical 10% photovoltaic device conversion efficiency was obtained with a $N_d=8.86{\times}10^{15}cm^{-3}$ defect density and 630 nm active layer thickness. Our investigation suggests a correlation between defect density and active layer thickness to device efficiency. We found that amorphous silicon solar cell efficiency can be improved to well above 10%.

Power Conversion Device using Discontinuous Conduction Mode in Photovoltaic Power Generation (태양광발전용 불연속모드 동작을 이용한 전력변환장치)

  • 김영철;전중함;김광태;유권종;서기영;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.113-115
    • /
    • 1998
  • This paper present a buck-boost PWM inverter and its application for residential system. The PWM power inverter is realized by driving a inverter constructed with a high frequency buck-boost chopper in the discontinuous conduction mode (DCM)

  • PDF

Optimal Design of Trench Power MOSFET for Mobile Application

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.195-198
    • /
    • 2017
  • This research analyzed the electrical characteristics of an 80 V optimal trench power MOSFET (metal oxide field effect transistor) for mobile applications. The power MOSFET is a fast switching device in fields with low voltage(<100 V) such as mobile application. Moreover, the power MOSFET is a major carrier device that is not minor carrier accumulation when the device is turned off. We performed process and device simulation using TCAD tools such as MEDICI and TSUPREM. The electrical characteristics of the proposed trench gate power MOSFET such as breakdown voltage and on resistance were compared with those of the conventional power MOSFET. Consequently, we obtained breakdown voltage of 100 V and low on resistance of $130m{\Omega}$. The proposed power MOSFET will be used as a switch in batteries of mobile phones and note books.

Investigation of the Effects of ZnO Thin Film Deposition Methods on Inverted Polymer Solar Cells (다양한 박막 형성법을 사용한 ZnO 전자 추출층이 역구조 고분자 태양전지에 미치는 영향 연구)

  • Lee, Donggu;Noh, Seunguk;Sung, Myungmo;Lee, Changhee
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • We investigated the effects of ZnO thin film deposition methods on the performance of inverted polymer solar cells with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Al. The ZnO thin films were deposited by various methods (spin coating of nanoparticles, sol-gel process, atomic layer deposition) and their morphology was analyzed by atomic force microscopy (AFM). The device with ZnO nanoparticle thin films showed the highest power conversion efficiency of 3 % with low series resistance and high shunt resistance. The superior performance of the device with the ZnO nanoparticle layer is attributed to better electron extraction capability.

Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole (Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구)

  • Yun, Dae-Hee;Yoo, Han-Sol;Seong, Ki-Ho;Lim, Jeong-Ho;Park, Yong-Sung;Wo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.487-496
    • /
    • 2014
  • In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.