• Title/Summary/Keyword: Photovoltaic arrays

Search Result 85, Processing Time 0.045 seconds

A Suggestion of New MPPT Algorithm in the PV system (태양광 시스템에서의 새로운 MPPT 알고리즘 제안)

  • Lee Kyungsoo;Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • As the maximum power operating point(MPOP) of the Photovoltaic(PV) power systems alters with changing atmospheric conditions, the efficiency of maximum power point tracking(MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. In this paper, the author analyzes and studies two MPPT algorithms, which is named P&O(Perturbation and Observation) and IncCond(Incremental Conductance). Also, the author proposes Hysterisis-band alteration algorithm. To show the excellency of new Hysterisis-band alteration, the author suggests three references; 1) Comparing three MPPT algorithms in the steady-state condition, 2) Representing irradiation variation rapidly, 3) Showing MPPT efficiency. MPPT simulation and experiment perform in the boost converter.

A Study on the New Maximum Power Point Tracking and Current Ripple Reduction of Solar Cell for the Grid-connected PV Inverter (계통연계형 태양광 인버터의 새로운 최대 전력점 추종과 태양전지의 전류리플 감소에 관한 연구)

  • Hwang, Uiseon;Kang, Moonsung;Yang, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1187-1195
    • /
    • 2013
  • Photovoltaic inverters should always track the maximum power of solar cell arrays in operation. Also, they should be irrespective of the maximum power point voltage of a wide range of solar cells in tracking the maximum power point. If the current ripple of solar cells occurs, the function of maximum power point tracking drops, and normal tracking is difficult when solar radiation or the maximum power point changes. To solve this problem, this paper proposed a new maximum power point tracking algorithm with high efficiency and an algorithm to reduce the current ripple of solar cells. According to the results from the test on 4KW grid-connected PV inverter, the efficiency of maximum power point tracking and inverter output and the total harmonic distortion of inverter output current showed 99.97%, 97.5% and 1.05% respectively. So, the inverter showed excellent performance, and made possible stable maximum power point tracking operation when the solar radiation rapidly changed from 100% to 10% and from 10% to 100% for 0.5 seconds.

The Effect of Mask Patterns on Microwire Formation in p-type Silicon (P-형 실리콘에서 마이크로 와이어 형성에 미치는 마스크 패턴의 영향)

  • Kim, Jae-Hyun;Kim, Kang-Pil;Lyu, Hong-Kun;Woo, Sung-Ho;Seo, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.418-418
    • /
    • 2008
  • The electrochemical etching of silicon in HF-based solutions is known to form various types of porous structures. Porous structures are generally classified into three categories according to pore sizes: micropore (below 2 nm in size), mesopore (2 ~ 50 nm), and macropore (above 50 nm). Recently, the formation of macropores has attracted increasing interest because of their promising characteristics for an wide scope of applications such as microelectromechanical systems (MEMS), chemical sensors, biotechnology, photonic crystals, and photovoltaic application. One of the promising applications of macropores is in the field of MEMS. Anisotropic etching is essential step for fabrication of MEMS. Conventional wet etching has advantages such as low processing cost and high throughput, but it is unsuitable to fabricate high-aspect-ratio structures with vertical sidewalls due to its inherent etching characteristics along certain crystal orientations. Reactive ion dry etching is another technique of anisotropic etching. This has excellent ability to fabricate high-aspect-ratio structures with vertical sidewalls and high accuracy. However, its high processing cost is one of the bottlenecks for widely successful commercialization of MEMS. In contrast, by using electrochemical etching method together with pre-patterning by lithographic step, regular macropore arrays with very high-aspect-ratio up to 250 can be obtained. The formed macropores have very smooth surface and side, unlike deep reactive ion etching where surfaces are damaged and wavy. Especially, to make vertical microwire or nanowire arrays (aspect ratio = over 1:100) on silicon wafer with top-down photolithography, it is very difficult to fabricate them with conventional dry etching. The electrochemical etching is the most proper candidate to do it. The pillar structures are demonstrated for n-type silicon and the formation mechanism is well explained, while such a experimental results are few for p-type silicon. In this report, In order to understand the roles played by the kinds of etching solution and mask patterns in the formation of microwire arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, dimethyl sulfoxide (DMSO), iso-propanol, and mixtures of HF with water on the structure formation on monocrystalline p-type silicon with a resistivity with 10 ~ 20 $\Omega{\cdot}cm$. The different morphological results are presented according to mask patterns and etching solutions.

  • PDF

Study on Current Collector for All Vanadium Redox Flow Battery (전바나듐계 레독스플로우전지용 집전체에 대한 연구)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.240-248
    • /
    • 2011
  • All-vanadium redox flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide range of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. Among consisting elements of the VRFB, the ion exchange membrane and the electrode play important roles. In this study, carbon PVC coposite sheets for the VRFB have been developed and electrochemical characteristics investigated. Current collector for VRFB, carbon PVC composite sheets (CPCS), were prepared with G-1028 as a conducting particle, PVC as a polymer, Dibutyl phthalate (DBP) as a plasticizer and fumed Silica (FS) as a dispersion agent. CPCS has been shown to have the characteristics as an excellent current collector for VRFB and electrochemical properties of specific resistivity 0.31 ${\Omega}cm$, which were composed of G-1028 80 wt%, PVC 10 wt%, DBP 5 wt% and FS 5 wt%.

A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System (3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구)

  • Nam J. H.;Kang B. H.;Gho J. S.;Choe G. H.;Shin W. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF

Electrochemical Oxidation of Carbon Felt for Redox Flow Battery (Redox flow battery용 carbon felt 전극의 전기화학적 산화)

  • Jung, Young-Guan;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.721-727
    • /
    • 2011
  • All vanadium redox-flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide rage of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. In this study, carbon felt electrodes were treated by electrochemical oxidation with KOH, and the cyclic voltammetry were studied in order to investigate redox reactivity of vanadium ion species with carbon felt electrodes. Besides the effect of electrochemical oxidation on the surface chemistry of carbon felt electrodes were investigated using the X-ray photoelectron spectroscopy (XPS). After electrochemical oxidation, XPS analysis of PAN based GF20-3 carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after electrochemical oxidation. Redox reaction characteristics using cyclic voltammetry (CV) were ascertained that the electrochemical treated electrode were more reversible than the untreated electrode.

Rule-based Coordination Algorithms for Improving Energy Efficiency of PV-Battery Hybrid System (태양광-배터리 하이브리드 전원시스템의 에너지 효율개선을 위한 규칙기반 협조제어 원리)

  • Yoo, Cheol-Hee;Chung, Il-Yop;Hong, Sung-Soo;Jang, Byung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1791-1800
    • /
    • 2012
  • This paper presents effective design schemes for a photovoltaic (PV) and battery hybrid system that includes state-of-the-art technologies such as maximum power point tracking scheme for PV arrays, an effective charging/discharging circuit for batteries, and grid-interfacing power inverters. Compared to commonly-used PV systems, the proposed configuration has more flexibility and autonomy in controlling individual components of the PV-battery hybrid system. This paper also proposes an intelligent coordination scheme for the components of the PV-battery hybrid system to improve the efficiency of renewable energy resources and peak-load management. The proposed algorithm is based on a rule-based expert system that has excellent capability to optimize multi-objective functions. The proposed configuration and algorithms are investigated via switching-level simulation studies of the PV-battery hybrid system.

Analysis and Control of Series$\cdot$Shunt Characteristics for Virtual Implementation of Solar Cell Module (태양전지 가상 구현 모듈의 직$\cdot$병렬 특성 해석 및 제어)

  • Han J.M.;Ryu T.G.;Yoo J,H.;Gho J.S,;Choe G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.72-75
    • /
    • 2001
  • The solar energy is purity and infinity. Solar power converter were used to convert the electrical energy from the solar arrays to a stable and reliable power source. So much country research this solar energy system. The photovoltaic system is construct many solar cell array, In this paper, new implementation solar system was showed buck converter that V-I curve produced. This system can be used to study the short-term and long-term performances of solar cell and efficiency. This system is a far more cost effective and reliable replacement for field and outdoor flight testing. Study of buck converter, analysis and control shun t$\cdot$series connection characteristics of solar cell array.

  • PDF

Implementation of a Switched PV Technique for Rooftop 2 kW Solar PV to Enhance Power during Unavoidable Partial Shading Conditions

  • Kumar, B. Praveen;Winston, D. Prince;Christabel, S. Cynthia;Venkatanarayanan, S.
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1600-1610
    • /
    • 2017
  • We propose maximum power extraction from a rooftop solar photovoltaic (PV) array during partial shading conditions. Partial shading is unavoidable during power extraction from rooftop PV systems due to nearby tall buildings (construction of additional floors) and trees (growth of trees). Many reconfiguration techniques can be used to extract maximum power in partial shading conditions, but in several cases, the real maximum power output is not achieved. In this study, a new switched PV technique is proposed to enhance the power output. The proposed technique is simple to use and more cost effective than other reconfiguration techniques. Therefore, it is suitable for rooftop applications. The power output of the proposed technique is compared with that of existing techniques with similar shading patterns. Eight panels with ratings of 250 watts (2 kW) each are used for testing. MATLAB simulation and hardware verification are done for the proposed and existing techniques. The proposed technique is implemented on a $4{\times}2$ PV array, although it can be extended to a number of arrays.

Characteristics of InGaAs/GaAs/AlGaAs Double Barrier Quantum Well Infrared Photodetectors

  • Park, Min-Su;Kim, Ho-Seong;Yang, Hyeon-Deok;Song, Jin-Dong;Kim, Sang-Hyeok;Yun, Ye-Seul;Choe, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.324-325
    • /
    • 2014
  • Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.

  • PDF