• Title/Summary/Keyword: Photovoltaic Power Prediction

Search Result 55, Processing Time 0.023 seconds

Performance Analysis of Photovoltaic Power System in Saudi Arabia (사우디아라비아 태양광 발전 시스템의 성능 분석)

  • Oh, Wonwook;Kang, Soyeon;Chan, Sung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • We have analyzed the performance of 58 kWp photovoltaic (PV) power systems installed in Jeddah, Saudi Arabia. Performance ratio (PR) of 3 PV systems with 3 desert-type PV modules using monitoring data for 1 year showed 85.5% on average. Annual degradation rate of 5 individual modules achieved 0.26%, the regression model using monitoring data for the specified interval of one year showed 0.22%. Root mean square error (RMSE) of 6 big data analysis models for power output prediction in May 2016 was analyzed 2.94% using a support vector regression model.

Development of Photovoltaic Output Power Prediction System using OR-AND Structured Fuzzy Neural Networks (OR-AND 구조의 퍼지 뉴럴 네트워크를 이용한 태양광 발전 출력 예측 시스템 개발)

  • Kim, Haemaro;Han, Chang-Wook;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.334-337
    • /
    • 2019
  • In response to the increasing demand for energy, research and development of next-generation energy is actively carried out around the world to replace fossil fuels. Among them, the specific gravity of solar power generation systems using infinity and pollution-free solar energy is increasing. However, solar power generation is so different from solar energy that it is difficult to provide stable power and the power production itself depends on the solar energy by region. To solve these problems in this paper, we have collected meteorological data such as actual regional solar irradiance, precipitation, temperature and humidity, and proposed a solar power output prediction system using logic-based fuzzy Neural Network.

Salt Farm Parallel Solar Power System:Field tests and Simulations (염전 병행 태양광 발전의 실증과 시뮬레이션)

  • Park, Jongsung;Kim, Bongsuck;Gim, Geonho;Lee, Seungmin;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.121-124
    • /
    • 2019
  • In this research, the concept of a salt farm parallel solar power system, which produce salt and electricity at the same site, is proposed for the first time in the world. The concept is that large waterproof plates made by interconnected solar modules are installed at the bottom of the salt farm. The pilot system was successfully installed at a sea shore, and verified its feasibility as a solar power plant. For deeper understanding, simulations for power prediction of the system were carried out and compared with the field test results. The power generation of the salt farm parallel system is comparable to conventional solar power plants. The cooling effect by sea water contributes more to the increase in the crystalline silicon photovoltaic module performance than the absorption loss due to sea water by maintaining certain height above the module.

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.

A Dynamic Piecewise Prediction Model of Solar Insolation for Efficient Photovoltaic Systems (효율적인 태양광 발전량 예측을 위한 Dynamic Piecewise 일사량 예측 모델)

  • Yang, Dong Hun;Yeo, Na Young;Mah, Pyeongsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.632-640
    • /
    • 2017
  • Although solar insolation is the weather factor with the greatest influence on power generation in photovoltaic systems, the Meterological Agency does not provide solar insolation data for future dates. Therefore, it is essential to research prediction methods for solar insolation to efficiently manage photovoltaic systems. In this study, we propose a Dynamic Piecewise Prediction Model that can be used to predict solar insolation values for future dates based on information from the weather forecast. To improve the predictive accuracy, we dynamically divide the entire data set based on the sun altitude and cloudiness at the time of prediction. The Dynamic Piecewise Prediction Model is developed by applying a polynomial linear regression algorithm on the divided data set. To verify the performance of our proposed model, we compared our model to previous approaches. The result of the comparison shows that the proposed model is superior to previous approaches in that it produces a lower prediction error.

Probabilistic Modeling of Photovoltaic Power Systems with Big Learning Data Sets (대용량 학습 데이터를 갖는 태양광 발전 시스템의 확률론적 모델링)

  • Cho, Hyun Cheol;Jung, Young Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.412-417
    • /
    • 2013
  • Analytical modeling of photovoltaic power systems has been receiving significant attentions in recent years in that it is easy to apply for prediction of its dynamics and fault detection and diagnosis in advanced engineering technologies. This paper presents a novel probabilistic modeling approach for such power systems with a big data sequence. Firstly, we express input/output function of photovoltaic power systems in which solar irradiation and ambient temperature are regarded as input variable and electric power is output variable respectively. Based on this functional relationship, conditional probability for these three random variables(such as irradiation, temperature, and electric power) is mathematically defined and its estimation is accomplished from ratio of numbers of all sample data to numbers of cases related to two input variables, which is efficient in particular for a big data sequence of photovoltaic powers systems. Lastly, we predict the output values from a probabilistic model of photovoltaic power systems by using the expectation theory. Two case studies are carried out for testing reliability of the proposed modeling methodology in this paper.

Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model (인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘)

  • Gun-Ha Park;Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.383-388
    • /
    • 2024
  • This paper is a study to derive the predicted value of power generation based on the photovoltaic power generation data measured in Jeollanam-do, South Korea. Multivariate variables such as direct current, alternating current, and environmental data were measured in the inverter to measure the amount of power generation, and pre-processing was performed to ensure the stability and reliability of the measured values. Correlation analysis used only data with high correlation with power generation in time series data for prediction using partial autocorrelation function (PACF). Deep learning models were used to measure the amount of power generation to predict the amount of photovoltaic power generation, and the results of correlation analysis of each multivariate variable were used to increase the prediction accuracy. Learning using refined data was more stable than when existing data were used as it was, and the solar power generation prediction algorithm was improved by using only highly correlated variables among multivariate variables by reflecting the correlation analysis results.

Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter (미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측)

  • Sung, Sangkyung;Cho, Youngsang
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.467-495
    • /
    • 2019
  • Uncertainty of renewable energy such as photovoltaic(PV) power is detrimental to the flexibility of the power system. Therefore, precise prediction of PV power generation is important to make the power system stable. The purpose of this study is to forecast PV power generation using meteorological data including particulate matter(PM). In this study, PV power generation is predicted by support vector machine using RBF kernel function based on machine learning. Comparing the forecasting performances by including or excluding PM variable in predictor variables, we find that the forecasting model considering PM is better. Forecasting models considering PM variable show error reduction of 1.43%, 3.60%, and 3.88% in forecasting power generation between 6am~8pm, between 12pm~2pm, and at 1pm, respectively. Especially, the accuracy of the forecasting model including PM variable is increased in daytime when PV power generation is high.