• Title/Summary/Keyword: Photovoltaic Power Generation System

Search Result 662, Processing Time 0.172 seconds

Evaluation on the Photovoltaic Module Arrangement Planning Considering Shading Conditions in Apartment Buildings (음영조건을 고려한 공동주택 옥상 태양광모듈의 배치계획 평가 연구)

  • Lee, Keo-Re;Lee, Yoon-Sun;Lim, Jae-Han
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.169-179
    • /
    • 2019
  • During the initial design stage of apartment complex, the photovoltaic(PV) system has been considered as an alternative of renewable energy system and planned to install at the rooftop floor level in general. The electric power generation characteristics can be influenced by the block layout, building orientation and roof top structure because of azimuth angle, tilt angle, and partial shading. This study aims to investigate power generation characteristics of photovoltaic system in apartment buildings by considering the partial shading conditions due to the block layout, building orientation and roof-top structures. For the photovoltaic module arrangement planning in rooftop floor level, shading areas were firstly analyzed due to the adjacent building structure. And the annual and seasonal power generation of PV system were analyzed through the PVsyst simulation results. The results show that shading period at the roof top surface can be increased due to the parapet and water tank. Initial design power capacity can be decreased by considering the daily insolation period and distance between PV modules through the shading simulation. As the number of PV modules decreases, the annual power generation can be decreased. However annual power generation per unit area of PV modules can be increased and performance ratio can be increased above 80%. Also the power generation of PV system can be critically affected by building orientation and the performance ratio can be drastically decreased in east-oriented buildings due to the shading problems caused by adjacent structures at roof top level such as parapet and water tank.

A Study on the Design of Wired and Wireless Communication System for Solar Panel Optimizer (태양광 패널 최적기의 유선 및 무선 통신 시스템 설계에 관한 연구)

  • Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.32-37
    • /
    • 2019
  • In this paper, we have designed a solar photovoltaic system to attach solar photovoltaic modules to each module and develop the best efficiency in each module. The efficiency of the designed solar panel optimizer was more than 99.27% and MPPT efficiency of 99.66%. In addition, the monitoring of power generation and abnormal operation phenomenon in each optimum period and tracking for failure location of specific photovoltaic module have improved the utilization rate of photovoltaic power generation. Wired and wireless communication methods has been proposed to monitor the power generation and operation status of the solar panel optimizer. For this purpose, the RS485 communication was used for wire communication and Zigbee communication was used for wireless communication to monitor the status of each module in real time. It is shown that communication redundancy can be achieved through the proposed method, and the possibility of commercialization is suggested.

A Study on the Harmonics and Flicker Measurements and Analysis of the Grid Connected Photovoltaic Power System (전력계통 연계형 태양광 발전시스템의 고조파 및 플리커의 측정 및 분석에 관한 연구)

  • Kim, Kyung-Chul;Kim, Yong-Kwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.48-57
    • /
    • 2012
  • This paper analyzes the characteristic of gird connected photovoltaic power generation system which is available to connect the utility. Renewable energy photovoltaic power system has been linked to the system to analyze the impact of photovoltaic system. It is measured that power data for the Grid connected photovoltaic power plant with instantaneous measuring and 3-sec measuring for 7 days. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. A cumulative probability approach is the most commonly used method to solve time varying harmonics. So, it is used 50[%] cumulative probability approach. This paper provides an in depth analysis on power quality field measurement of the Grid connected photovoltaic power plant.

Power Pattern Analysis According to Irradiation and Module Temperature for Photovoltaic Systems (태양광 발전시스템의 모듈온도와 일사량에 따른 전력 패턴 분석)

  • Hong, Jung-Hee;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.174-176
    • /
    • 2009
  • This paper aims to investigate generation conditions necessary for the most efficient generation by measuring electricity power under various irradiation conditions, since the photovoltaic generation system has high costs and low efficiency. This thesis aims to investigate generation conditions necessary for the most efficient generation by measuring electricity power under various irradiation conditions, since the photovoltaic generation system has high costs and low efficiency. Although the generation power increased with the irradiation, the former did not vary directly as the latter. This meant that the variation of the generation power was concerned in the temperature of a module, the ambient temperature, and the directions of irradiation as well as the irradiation. As for the monthly accumulated irradiation and monthly accumulated power, the maximum irradiation and generation power were observed in May and October and the irradiation, the power and the accumulated generation power were all the highest in spring, followed by fall, summer and winter.

  • PDF

A Study on the Development of Discontinuous Energy Generation System for Power Compensation Using Microcontroller (마이크로컨트롤러를 이용한 전력보상용 불연속 에너지 발생 시스템 개발에 대한 연구)

  • 이정일;임중열;차인수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1031-1035
    • /
    • 2002
  • The development of the solar and the wind power energy is necessary since the future alternative energies should have no pollution and no limitation. currently power generation system of MW scale has been developed, but it still has a few faults that its operation depends on with the weather condition. In order to solve these existing problems. combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However. since the combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring was added. In an experiment. when output of system gets lower than 12V(charging voltage), additional power was from the stored rotational energy of spiral spring.

50KW Photovoltaic Generation System for Model House Power Supply Using Alternative Energy (대체에너지 이용 시범주택 전원용 50KW 태양광발전시스템)

  • Park, J.M.;Park, J.H.;Kim, K.B.;Lee, K.Y.;Shin, S.H.;Cho, G.B.;Baek, H.N.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1335-1337
    • /
    • 2002
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Output Power Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 출력전력 특성)

  • Park, Chul-Woong;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.186-188
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a temperature range of 10$\sim$50[], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power.

  • PDF

EMTP Implementation of Power Factor Controller in Utility Interactive Photovoltaic System (EMTP를 이용한 태양광 연계 계통의 역률 제어기 구현)

  • Kim, Sang-Hyub;Rhee, Sang-Bong;Kim, Chul-Hwan;Lyu, Seung-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.490-491
    • /
    • 2008
  • A photovoltaic power generation system is one of the ideal clean energy sources increasingly replacing fossil fuel, which has many environmental problems such as exhausted gas or air pollution. As a photovoltaic generation system should meet the requirement to be connected to utility, power factor is an important factor for the high quality of power. This paper implements a power factor controller to improve the power quality of utility interactive photovoltaic system. To verify the effectiveness of the implemented power factor controller, the results by Electromagnetic Transients Program (EMTP) are presented.

  • PDF

A Study on The Energy Conservation System in House for reducing the Environmental Load (환경부하 저감을 위한 주택의 에너지절약 시스템에 관한 연구 -소형코제너레이션시스템과 태양광발전시스템을 적용한 성능평가-)

  • 정진현
    • Journal of the Korean housing association
    • /
    • v.11 no.1
    • /
    • pp.159-169
    • /
    • 2000
  • This study was examined the energy conservation and the environmental value through the computer simulation employing the micro cogeneration system and the photovoltaic power generation system in house. The results of this study were as follows:1. In case of the micro cogeneration system. With the conditions of 'the electric produced by the micro cogeneration system was not sold to the electric power company', 'control quantity of commercial power supply was 10%' , 'operating time was 6 hour', 'minimum load rate of generator was 50%', and 'having a storage tank', the micro cogeneration system was superior compare to the comparative system in 2.4% of the energy conservation and 4.18% of the environmental value. 2. In case of the photovoltaic power generation system. 1) The 66.9% of total generated electric power from the photovoltaic power system was sold to the electric power company. That is, it could help to preserve the electric power from commercial power supply.2) There is a possibility of cutting the fair rate of electric power.

  • PDF

A Study on the Auxiliary Power Generator for Urban Photovoltaic/Wind Hybrid System (도시형 태양광/풍력 복합발전의 보조 전력발생장치 개발에 대한 연구)

  • Park, Se-Jun;Yun, Jeong-Phil;Yoon, Pil-Hyun;Ji, Woon-Seok;Lim, Jung-Yeol;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.187-191
    • /
    • 2004
  • Photovoltaic and wind power generation have an advantage of unpolluted and unlimited amount of energy resource. Since there is such an advantage in these energies, But photovoltaic system and wind system cannot always generate stable output with ever-changing weather condition. In this paper, the auxiliary power generator for hybrid system(photovoltaic 500[W], wind power generation 400[W]) was suggested. the auxiliary power generator that uses elastic energy of spiral spring to photovoltaic system was also added for present system. when output of photovoltaic system gets lower than 24[V], power was continuously supplied to load through the inverter by charging energy of spiral spring operates in DC generator.

  • PDF