• 제목/요약/키워드: Photovoltaic Power

검색결과 2,160건 처리시간 0.027초

On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation

  • Fonseca Junior, Joao Gari da Silva;Oozeki, Takashi;Ohtake, Hideaki;Takashima, Takumi;Kazuhiko, Ogimoto
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1342-1348
    • /
    • 2015
  • The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The method is based on the maximum likelihood estimation, the similarity between the input data of future and past forecasts of photovoltaic power, and on an assumption about the distribution of the error of the forecasts. Two assumptions for the forecast error distribution were evaluated, a Laplacian and a Gaussian distribution assumption. The results show that the proposed method models well the photovoltaic power forecast error when the Laplacian distribution is used. For both systems and intervals calculated with 4 confidence levels, the intervals contained the true photovoltaic power generation in the amount near to the expected one.

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

다습환경 태양광발전시스템 안전성 평가 (Safety Evaluation of Solar Power System in High Humidity Environment)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.181-186
    • /
    • 2019
  • 수상태양광발전 시스템은 건물옥상이나 산지 등에 개발되는 육상 태양광 발전과는 달리 주로 댐이나 저수지 등 수면위에 부력체를 이용하여 태양광 모듈을 설치하는 새로운 개념의 발전기술로서 국내 저수지 수면의 약 5 % 정도만 활용하다라도 약 4,170 MW 규모의 발전시설 건설이 가능할 만큼 개발 잠재량이 풍부하여 환경에 대한 훼손이 없이 국토의 효율적 이용이 가능한 장점이 있다. 그러나 육상과 달리 수면위에서 태양광 발전을 하기 위해서는 부력체를 이용하여 모듈 등 발전시설을 수면 위에 설치하여야 하며, 이와 더불어 수위 및 유속의 변동 등에도 안정적으로 시설을 유지할 수 있는 기술이 요구된다. 이러한 수상태양광발전 시스템에 추가적으로 안전성을 평가할 수 있는 기술기준이 현재 정립이 되어 있지 않으며 본 논문을 통해 수상태양광발전 시스템의 표준화를 위해 고려할 사항들을 정리하였다.

수상태양광 발전시스템 개발을 위한 적지조사에 관한 연구 (Study on Analysis of Suitable Site for Development of Floating Photovoltaic System)

  • 이성훈;이남형;최형철;김진오
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.30-38
    • /
    • 2012
  • Recently, interests in renewable energy have gradually increased. Photovoltaic system of various renewable energy is the most interest in power sources. Nowadays, the market of photovoltaic system is expected to be expanded due to the introduction of RPS(Renewable Portfolio Standard). Floating photovoltaic system is a new power system using the water surface above the dam and reservoir water. Floating photovoltaic system is different from the traditional approach to the development of solar power system causing problems such as environmental degradation. This paper investigates the analysis methods of suitable site for the development of floating photovoltaic system. The A,B,C as the optimal candidates were selected in hap cheon dam. The C is the best suitable site in A,B,C considering the expected power generation. Applied methods have effectively done to develop floated photovoltaic system.

PV와 PEFC를 병용한 가정용 분산 전원 시스템의 전력평준화 제어법 (Power Balancing Control Method of A Residential Distributed Generation System using Photovoltaic Power Generation and Polymer Electrolyte Fuel Cells)

  • 윤영변;문상필;박한석;우경일
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.335-339
    • /
    • 2016
  • Output power in photovoltaic systems changes steeply with the change of the sun intensity. The change of output power has influence on the electric power quality of the system. This paper proposes a residential distributed generation system using photovoltaic power generation and polymer electrolyte fuel cells(hybrid systems). In order to level the output power which changes steeply the polymer electrolyte fuel cells are connected to the photovoltaic power generation system in parallel. Thus the generated power of all the system can be leveled. However, the steep generated power in the photovoltaic power generation system can not be leveled. Therefore, the electric double layer capacitor(EDLC) is connected in parallel with the hybrid systems. It is confirmed by the simulation that the proposed distributed generation system is available for a residential supply.

태양광발전 시스템의 일사량에 따른 전력 패턴 분석 (Analysis of Power Pattern According to Irradiation for Photovoltaic Generation System)

  • 이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.602-608
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. As I-V characteristics according to a temperature range of 10~50[$^{\circ}C$], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature. As output power characteristics according to a temperature range of 10~50[$^{\circ}C$], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power. As I-V characteristics according to a irradiation range of 100~900 [$W/m^2$], voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation. As output power characteristics according to a irradiation range of 100~900 [$W/m^2$], output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

출력을 고려한 태양전지 어레이 최적 배치에 관한 연구 (A Study on the Photovoltaic Array Optimal Arrangement Considering Power Output)

  • 최홍규;최대원;유해출;최신권;김용규
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.96-105
    • /
    • 2009
  • 태양광발전소 두 곳을 샘플링하여 출력저하의 요인 중 우리나라 실정에 맞지 않는 입사각에 따른 태양전지 어레이 간의 음영에 의한 출력저하를 비교 분석하여 설비용량, 설비사양, 부지면적의 변화 없이 태양전지 어레이의 재배치를 통해 최대 출력을 낼 수 있는 태양전지 어레이의 최적 간격을 산정한다. 태양전지 어레이 1열 재배치 시에는 약 1.2[%], 2열 재배치 시에는 약 2.8[%], 3열 재배치 시에는 약 5.0[%]의 출력이 향상되었다. 또한 1열 재배치 시에는 태양전지 어레이 당 0.39[m], 2열 재배치 시에는 태양전지 어레이 당 0.82[m], 3열 재배치 시에는 태양전지 어레이 당 1.29[m]의 간격 이득을 얻었다. 태양전지 어레이 간격에 이득이 생기면서 음영의 영향을 받게 되는 시간이 점점 늦춰지게 되고 결국 출력의 향상이 나타나는 결과를 보였다.

집광추적형 PV발전의 특성에 관한 연구 (Characteristics of Photovoltaic Power Generation by Concentration and Tracking)

  • 김봉래;박상규;오현경;유영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.39-40
    • /
    • 2005
  • Photovoltaic Power Generation system occupies an important position as an alternative energy source, converting directly sunlight into electricity,using a photovoltaic cell. The Purpose of this research is to present and confirm the effectiveness of concentration and tracking of sun in photovoltaic power generation. Comparative experiments were carried outwith two rating 75 watt solar modules in $25^{\circ}$ under condition of various times concentration, tracking and plain normal measuring generated voltages, currents and temperatures of back sheet of modules by internet monitoring system to find out which is best in economic sense. The experiments show that output power of concentration and tracking photovoltaic power generation is over 180% more then that of plain normal system.

  • PDF

대학건물의 전력소비패턴 분석을 통한 태양광, ESS 적정용량 산정 및 경제적 효과 분석 (Calculation of Photovoltaic, ESS Optimal Capacity and Its Economic Effect Analysis by Considering University Building Power Consumption)

  • 이혜진;최정원
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.207-217
    • /
    • 2018
  • Recently, the importance of energy demand management, particularly peak load control, has been increasing due to the policy changes of the Second Energy Basic Plan. Even though the installation of distributed generation systems such as Photovoltaic and energy storage systems (ESS) are encouraged, high initial installation costs make it difficult to expand their supply. In this study, the power consumption of a university building was measured in real time and the measured power consumption data was used to calculate the optimal installation capacity of the Photovoltaic and ESS, respectively. In order to calculate the optimal capacity, it is necessary to analyze the operation methods of the Photovoltaic and ESS while considering the KEPCO electricity billing system, power consumption patterns of the building, installation costs of the Photovoltaic and ESS, estimated savings on electric charges, and life time. In this study, the power consumption of the university building with a daily power consumption of approximately 200kWh and a peak power of approximately 20kW was measured per minute. An economic analysis conducted using these measured data showed that the optimal capacity was approximately 30kW for Photovoltaic and approximately 7kWh for ESS.

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • 전기전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF