• Title/Summary/Keyword: Photovoltaic Module, Solar Cell Module

Search Result 223, Processing Time 0.025 seconds

An Experiment Study on Manufacturing process of BIPV Module (BIPV모듈의 제조공정에 관한 실험적 연구)

  • An, Youngsub;Kim, Sungtae;Lee, Sungjin;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.54-54
    • /
    • 2010
  • In this study, the correlation between temperature and the gel-content of the module were analyzed through experiments. Amorphous thin-film solar cell used in this experiment has a visible light transmission performance of 10%. In addition, ethylene vinyl acetate(EVA) film and the clear glass have been used for the modulation. The most important process is to laminate the module in the manufacturing process of BIPV(Building integrated photovoltaic) module. Setting parameters of laminator in the lamination process are temperature, pressure and time. Setting conditions significantly affect the durability, watertightness and airtightness of module. The most important factor in the setting parameters is temperature to satisfy the gel-contents. The bottom and top surface temperature of module are measured according to setting temperature of laminator. The results showed $145^{\circ}C$ of max temperature of the bottom surface and $128^{\circ}C$ of max temperature of top surface on the module at the temperature condition of $160^{\circ}C$. And at the another temperature condition of laminator with $150^{\circ}C$, the max temperature do bottom and top are $117^{\circ}C$ and $134^{\circ}C$ respectively. The temperature difference between bottom and top of the module occurred, that is because heat has been blocked by the clear glass and the bottom of the cells absorb the heat from the laminator. In this particular, the temperature difference between setting temperature of the laminator and the surface temperature of the module showed $15^{\circ}C$, because the heat of laminator plate is transferred to the surface of the module and heat is lost at this time. As a results, gel-content showed 94.8%, 88.7% and 81.7% respectively according to the setting temperature $155^{\circ}C$, $150^{\circ}C$ and $145^{\circ}C$ of the laminator. In conclusion, the surface temperature of module increases, the gel-contents is relatively increased. But if the laminator plate temperature is too high, the gel-content shows rather decline in performance. Furthermore, the temperature difference between setting temperature and the surface temperature of the module is affected by laminating machine itself and the temperature of module should be considered when setting the laminator.

  • PDF

Analyzing the Possibility of the Building Integrated Photovoltaic with DSC by the Case Studies (사례연구를 통한 DSC에 의한 BIPV 가능성 분석 연구)

  • Lee, Eung-Jik
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.54-63
    • /
    • 2017
  • The various colors and transparency of DSC and operability unrelated with directions greatly expand the use of BIPV, as a multi-functional composite of module. Therefore the possibility of DSC BIPV is examined by the case study and the analysis and then its applicability is examined. Most of the DSC BIPVs, which are found through a total of six case studies and analyzes in Korea and abroad, are mainly implemented with window glass and shading devices. This is related to the DSC transparency property. Improvements are due to the irritation of the eye due to the color of the red module. Therefore, it is important to take into account the color of the BIPV window depending on the use of the building and the room. Meanwhile, some colors of application model may stimulate eyes and such colors should be considered by use of buildings and rooms in the application of BIPV window. DSC BIPV has prospective diffusibility with the development of flexible module for the application of building surface.

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Kang, Min-Gu;Song, Hee-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.194-198
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 80% of the market, despite the development of various thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon materials remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner the silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials with different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With less amount of paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 120 micron thickness of the wafer even though the conversion efficiency decrease by 0.5% occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al layer application.

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

The Output Characteristics of 3kW BIPV System (건물일체형 태양광발전시스템의 실증분석)

  • Kim, Ji-Hoon;Jie, Bian Wen;Lee, Kang-Yeon;Kim, Pyoung-Ho;Oh, Geum-Gon;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.386-389
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. In case of PV(photovoltaic system) there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system). In this paper, we compared constitute factors of 3kW BIPV(solar cell module, inverter), operating characteristic and total system characteristic(utilization, generation efficiency, loss fact) and found out long time operating data using a watch instrumentations. By use of long time operating result, compare a totally operating characteristics, and we proposed a next building application of BIPV. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. The objective of this paper, is to provide a efficient BIPV design method through the considerations for the integration of PV system.

  • PDF

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Research on Minimizing Output Degradation in HJT Cell Separation Using IR Laser Scribing (IR 레이저 스크라이빙에 의한 HJT 셀 분할 시 출력 감소율 최소화에 대한 연구)

  • Eunbi Lee;Sungmin Youn;Minseob Kim;Jinho Shin;Yu Jin Kim;Jeonghun Kim;Min-Joon Park;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.37-40
    • /
    • 2024
  • One of the current innovation trends in the solar industry is the increase in the size of silicon wafers. As the wafer size increases, the series resistance of the module rises, highlighting the need for research on methods for cutting and bonding solar cells. Among these, the Infrared (IR) laser scribing technique has been extensively researched. However, there is still insufficient optimization research regarding the thermal damage caused by lasers on the Transparent Conductive Oxide (TCO) layer of Heterojunction (HJT) solar cells. Therefore, in this study, we systematically varied conditions such as IR laser scribing speed, frequency, power, and the number of scribes to investigate their impact on the performance of cut cells under each condition. Additionally, we conducted a comparative analysis of thermal damage effects on the TCO layer based on varying scribing depths.

Temperature and Power Generation Characteristics of c-Si G/G Spandrel Window depending on Opening Ratio of PV Module (스팬드럴용 투광형 결정계 PV창호의 셀 간격 개구율에 따른 온도 및 발전성능 해석연구)

  • Yoon, Jong-Ho;Kim, Dong-Su;Oh, Myung-Hwan;Lee, Jae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.51-58
    • /
    • 2012
  • This study aims to analyze characteristics of Cell surface temperature and generated power performance for improving PV(Photovoltaic) system condition according to the cell opening ratio of transparent crystal PV system at Spandrel of curtain-wall. For this purpose, alternatives were classified for eight different cases that opening ratio of transparent crystal PV system varied from 0% to 70%, which was used by simulation tool, EnergyPlus. As results, it turned out that increasing opening ratio of transparent crystal PV system led higher PV surface temperature, back-sheet type was thus the most advantageous for decreasing surface temperature, annual generating efficiency, and annual accumulated generating power. Consequently, blocking off air space from outside insolation can advantageously keep to be better condition for generated power performance.

Study of ZnS/CIGS Hetero-interface for Cd-free CIGS Solar Cells (Cd-free 태양전지를 위한 ZnS/CIGS 이종접합 특성 향상 연구)

  • Shin, Donghyeop;Kim, Jihye;Go, Youngmin;Yun, Jaeho;Ahn, Byungtae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.106.1-106.1
    • /
    • 2011
  • The Cu(In,Ga)Se2 (CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. Among Cd-free candidate materials, the CIGS thin film solar cells with ZnS buffer layer seem to be promising with 17.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, ZnS/CIGS solar cells still show lower performance than CdS/CIGS solar cells. There are several reported reasons to reduce the efficiency of ZnS/CIGS solar cells. Nakada reported ZnS thin film had many defects such as stacking faults, pin-holes, so that crytallinity of ZnS thin film is poor, compared to CdS thin film. Additionally, it was known that the hetero-interface between ZnS and CIGS layer made unfavorable band alignment. The unfavorable band alignment hinders electron transport at the heteo-interface. In this study, we focused on growing defect-free ZnS thin film and for favorable band alignment of ZnS/CIGS, bandgap of ZnS and CIGS, valece band structure of ZnS/CIGS were modified. Finally, we verified the photovoltaic properties of ZnS/CIGS solar cells.

  • PDF

Test Results Grid Connection of 120 kW Power Generation System (120 kW급 태양광 발전시스템 설치 및 실 계통연계 운전 결과 평가)

  • Hwang, Jung-Hee;Ahn, Kyo-Sang;Lim, Hee-Cheon;Kim, Su-Chang;Kim, Sin-Sub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.338-346
    • /
    • 2006
  • In this paper, the test results of medium-size(120 kW class) PV system which was installed in the Taeahn thermal power station of Korea Western Power Co., Ltd., were summarized for developing the practical technology to applicate high voltage grid connection PV system. The 120 kW photovoltaic system which was consisted of 1,300 modules, PCS, and 150 kVA transformer station has been operated since Aug. 05, 2005. For verifying the modeling results of PV system, the operation data was compared with modeling results which was executed commercial PSCAD/EMTD and Psim tools. An equivalent circuit model of a solar cell has been also used for solar array modeling. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter(VIS) and its current control scheme have been analyzed by using P&O (perturbation and Observation) MPPT algorithms technique.