• Title/Summary/Keyword: Photovoltaic Module, Solar Cell Module

Search Result 223, Processing Time 0.025 seconds

Optimal Design of Coverglass Pattern in Building-Integrated Photovoltaic for Improved Yearly Electrical Energy (Building-Integrated Photovoltaic 시스템의 연간 발전 에너지 향상을 위한 커버글라스 패턴의 최적설계)

  • Kim, Taehyeon;Lee, Seung-Chul;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.297-302
    • /
    • 2020
  • A coverglass pattern was designed to improve the annual electrical energy production of a building-integrated photovoltaic (BIPV) module installed in the exterior walls of buildings. The transmittance pattern was calculated using ray tracing, and the results were derived by optimizing the simulation using Taguchi's method. We obtained the optimal pattern by analyzing the conventional patterns for improving the transmittance and derived design factors by quantifying the pattern. By calculating the influence of electrical energy on each design factor, we obtained the optimal coverglass pattern that produced the maximum annual electrical energy. The annual electrical energy production improved by approximately 11.79% compared to the non-patterned coverglass.

A Study on the Cell String for High Efficiency and High Power Photovoltaic Modules (고효율 및 고출력 태양광 모듈을 위한 셀 스트링 연구)

  • Park, Ji Su;Hwang, Soo Hyun;Oh, Won Je;Lee, Su Ho;Jeong, Chae Hwan;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.295-299
    • /
    • 2018
  • In this work, we conducted a study on cell strings of high efficiency and high power solar cell modules via simulation. In contrast to the conventional module manufacturing method, the simulation was performed by connecting cutting cells divided into four parts from 6-in size using the electrically conductive adhesive (ECA). The resistance of the ECA added in series connection was extracted using an experimental method. This resistance was found to be $3m{\Omega}$. Based on this simulation, we verified the change in efficiency of the string as a function of the number of cutting cell connections. Consequently, the cutting cell efficiency of the first 20.08% was significantly increased to 20.63% until the fifth connection; however, for further connections, it was confirmed that the efficiency was saturated to 20.8%. Connecting cutting cells using ECA improves the efficiency of the string; therefore, it is expected that it will be possible to fabricate modules with high efficiency and high power.

Installation and Performance Evaluation of 100kWp PV System in Tibet (중국 티베트지역의 100kWp급 태양광발전시스템 실증연구)

  • Kim Seok-Ki;Yun Jae-Ho;Lee Jeong-Chul;Ahn Se-Jin;Yoon Kyung-Hoon;Song Jin-Soo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.16-22
    • /
    • 2006
  • This paper present the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea.

  • PDF

Research on the Power Drop of Photovoltaic Module’s Aging Through the Thermal Shock Test

  • Kang, MinSoo;Jeon, YuJae;Kim, DoSeok;Shin, YoungEui
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.268-273
    • /
    • 2015
  • While analyzing the specimens before and after the thermal shock test, we found that the power drop rate of the bare cell was 5.08%, while the power drop rate of the ribboned cell was 16.49%. In comparative terms, the efficiency was lower at the ribboned cell than at the bare cell. While analyzing through EL (Electroluminescence) shots and cross sections, we tried to decipher the exact cause of the power drop. Although mere color change of the cell was observed at the surface of the bare cell, no abnormality could be found inside the cell. On the surface of the ribboned cell, the short circuit of gridfinger extended from the front part of the front electrode of the ribboned cells. Therefore, cracks occurred on the surface of the cell. Cracks also appeared inside the cell. While analyzing the I-V curve, we determined an increase in the leakage current and an increase of resistances in series in the bare cell. In the ribboned cell, the resistances in parallel reduced remarkably. An increase of resistances in series could also be verified. Conclusively, we deduced that the power drop rate in the bare cell is a life span of the cell itself; aging is the cause of power drop rate in cells. In case of ribboned cell, the power drop rate was directly influenced by internal cracks and an intermetallic compound layer joining the ribbon at the front electrode.

Soft-switching Current Source Inverter for Interconnection of Solar Cell with Power System (태양전지의 개통연계를 위한 소프트스위칭 전류원 인버터)

  • Choy, Young-Do;Park, Sang-Ho;Kim, Hee-Joong;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.345-347
    • /
    • 2000
  • This paper proses a soft-switching current-source inverter with a switched-capacitor module. The system operation was analyzed by a theoretical approach with equivalent circuits and verified by a computer simulation and experiment. The proposed system could be effectively applied for the power converter of photovoltaic power generation interconnected with the power system.

  • PDF

PSCAD/EMTDC Based Modeling and Simulation Analysis of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 미용한 계통연계형 태양광발전시스템의 모델링 및 모의 해석)

  • Jeon Jin-Hong;Kim Eung-Sang;Kim Seul-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.107-116
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMTDC, an industry standard simulation tool for studying the transient behavior of electric power system and apparatus, is used to conduct all aspects of model implementation and to carry out extensive simulation study. This paper is aimed at sharing with the PSCAD/EMTDC user community our user-defined model for PV system applications, which is not yet available as a standard model within PSCAD/EMTDC. An equivalent circuit model of a solar cell has been used for modeling solar array. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

A Study on the Application of Fixed-concentrated PV Module Hybrid Panel for BIPV (고정식 집속형 PV모듈 복합패널의 BIPV적용성 검토)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.77-83
    • /
    • 2005
  • The verified thermal efficiency, thermal capacity confirmed the effects of the cooling system. Therefore, it is useful for preventing the PV cell temperature rising when solar radiation accumulates in summer. When adopting a hybrid panel for the BIPV system, the affected areas include the vertical outside walls facing the south, southeast, and southwest on the curtain walls excluding windows. The standards on replace aluminum panel which were the popular exterior material were investigated, Designing practice made sure that it could be manufactured in various sizes, and confirmed the most proper method to install a hybrid panel in the BIPV system.

A Study on The Simulation of Photovoltaic Cell (태양광발전용 cell의 시뮬레이션에 관한 연구)

  • Lee, K.Y.;Lee, J.I.;Kim, B.I.;Jeung, S.K.;Park, Y.S.;Suh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.110-113
    • /
    • 2004
  • PV model is presented based on the shockley diode equation. The simple model has a photo-current source, an single diode junction and a series resistance and includes temperature dependences. An accurate PV module electrical model is presented, matching with boost converter MPPT strategy and demosnstarted in Matlab for a typical general purpose solar cell. Given solar insolation and temperature, the model returns current vector and MPP.

  • PDF

Study on the Long-term Reliability of Photovoltaic Module in the Cell level (태양전지의 Cell 레벨에서의 장기 신뢰성에 관한 연구)

  • Kim, Koung-Hwan;Jeon, Yu-Jae;Kim, Do-Sok;Jo, Il-Jea;Shin, Young-Eui
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.177-181
    • /
    • 2012
  • 본 연구는 고온고습 시험을 통하여 Cell 레벨에서의 표면관찰 및 효율저하를 분석하였다. 고온고습 시험 조건은 KS C IEC-61215에서 제시한 PV module하의 조건을 이용하여 온도 $85^{\circ}C$, 습도 85% 조건하에 1000시간 동안 수행하였다. 고온고습 시험에 따라 효율에 직접적인 영향을 줄 수 있는 이상 유 무를 Cell 표면을 통해 분석한 결과, 고온고습 시험 수행 중 부분적으로 변색되는 것을 확인하였다. 고온고습 시험 전 단결정 Cell의 효율은 17.74% 였으며, 1000시간 수행 후 15.63%으로 11.89%의 감소율을 보였다. 다결정 Cell의 시험 전 효율은 15.46%, 1000시간 수행 후 효율은 14.02%로 9.31%의 감소율을 보였다. 경년 시 나타나는 전기적 특성을 분석하기 위해 FF(Fill Factor)값을 분석한 결과, 고온고습 시험 전 단결정 Cell은 78.71%에서 75.01%로 4.7%의 감소율을 보였으며, 다결정 Cell은 78.10 %에서 76.66%로 1.84%의 감소율을 보였다. 효율 및 FF값에서 단결정 Cell이 다결정 Cell보다 감소율이 큰 것으로 분석되었으며, 이는 단결정 Cell이 외부 환경에서 더욱 크게 작용하여 효율저하에 영향을 주었다고 판단된다.

  • PDF