Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.4.297

Optimal Design of Coverglass Pattern in Building-Integrated Photovoltaic for Improved Yearly Electrical Energy  

Kim, Taehyeon (Department of Electronic Engineering, Inha University)
Lee, Seung-Chul (Department of Electronic Engineering, Inha University)
Park, Woo-Sang (Department of Electronic Engineering, Inha University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.4, 2020 , pp. 297-302 More about this Journal
Abstract
A coverglass pattern was designed to improve the annual electrical energy production of a building-integrated photovoltaic (BIPV) module installed in the exterior walls of buildings. The transmittance pattern was calculated using ray tracing, and the results were derived by optimizing the simulation using Taguchi's method. We obtained the optimal pattern by analyzing the conventional patterns for improving the transmittance and derived design factors by quantifying the pattern. By calculating the influence of electrical energy on each design factor, we obtained the optimal coverglass pattern that produced the maximum annual electrical energy. The annual electrical energy production improved by approximately 11.79% compared to the non-patterned coverglass.
Keywords
Building-integrated photovoltaic; Solar cell; Taguchi's method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. S. Lim, G. Lalchand, and G.M.S. Lin, Energy Policy, 36, 2130 (2008). [DOI: https://doi.org/10.1016/j.enpol.2008.02.016]   DOI
2 F. Cucchiella, I. D'Adamo, and S.C.L. Koh, J. Cleaner Prod., 98, 241 (2015). [DOI: https://doi.org/10.1016/j.jclepro.2013.10.043]   DOI
3 F. Azadian and M.A.M. Radzi, Renewable Sustainable Energy Rev., 22, 527 (2013). [DOI: https://doi.org/10.1016/j.rser.2013.01.056]   DOI
4 L. Lu and H. X. Yang, J. Sol. Energy Eng., 126, 929 (2004). [DOI: https://doi.org/10.1115/1.1701883]   DOI
5 S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, Sol. Energy Mater. Sol. Cells, 90, 2710 (2006). [DOI: https://doi.org/10.1016/j.solmat.2006.04.001]   DOI
6 J. H. Selj, T. T. Mongstad, R. Sondena, and E. S. Marstein, Sol. Energy Mater. Sol. Cells, 95, 2576 (2011). [DOI: https://doi.org/10.1016/j.solmat.2011.03.005]   DOI
7 K. H. Nielsen, D. K. Orzol, S. Koynov, S. Carney, E. Hultstein, and L. Wondraczek, Sol. Energy Mater. Sol. Cells, 128, 283 (2014). [DOI: https://doi.org/10.1016/j.solmat.2014.05.034]   DOI
8 K. Tvingstedt, S. D. Zilio, O. Inganas, and M. Tormen, Opt. Express, 16, 21608 (2008). [DOI: https://doi.org/10.1364/OE.16.021608]   DOI
9 K. Tvingstedt, Z. Tang, and O. Inganas, Appl. Phys. Lett., 101, 163902 (2012). [DOI: https://doi.org/10.1063/1.4759125]   DOI
10 S. B . Rim, S . Zhao, S . R. S cully, M . D . McGehee, a nd P. Peumans, Appl. Phys. Lett., 91, 243501 (2007). [DOI: https://doi.org/10.1063/1.2789677]   DOI
11 C. Cho, H. Kim, S. Jeong, S. W. Baek, J. W. Seo, D. Han, K. Kim, Y. K. Park, S. Yoo, and J. Y. Lee, Sol. Energy Mater. Sol. Cells, 115, 36 (2013). [DOI: https://doi.org/10.1016/j.solmat.2013.03.014]   DOI
12 L. Sun, L. Lu, and H. Yang, Appl. Energy, 90, 233 (2012). [DOI: https://doi.org/10.1016/j.apenergy.2011.01.062]   DOI
13 D. Paul, S. N. Mandal, D. Mukherjee, and S.R.B. Chaudhuri, Renewable Energy, 35, 2182 (2010). [DOI: https://doi.org/10.1016/j.renene.2010.02.026]   DOI
14 G. Taguchi, M. El Sayed, and C. Hsaing, Quality Engineering and Quality System (McGraw-Hill, New York, 1989).