• Title/Summary/Keyword: Photovoltaic Generation

Search Result 973, Processing Time 0.026 seconds

The development of 1.2kW photovoltaic generation system for the simulation model (축소모델용 1.2kW 태양광 발전 시스템 개발에 관한 연구)

  • Won, Yu-Jun;Jeong, Jin-Beom;Kim, Hee-Jun;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.355-357
    • /
    • 2006
  • A study of the photovoltaic generation system tend to concentrate its importance on specific filed such as analysis of photovoltaic characteristic, improvement of a inverter, and controller. In this paper, a practical facility of the photovoltaic generation system and connection of its organization are presnted with process of 1.2kW prototype. From the results of monitoring system which is for reliability and analysis of the photovoltaic generation system, stability of the system was confirmed.

  • PDF

Operation of Photovoltaic Generation System with Battery and Electrolyzer (Battery와 Electrolyzer를 이용한 태양광 발전시스템 운영)

  • Gang, Gi-Hyeok;Kim, Yun-Seong;Loc, Nguyen Khanh;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1994-2000
    • /
    • 2008
  • The output power of photovoltaic(PV) generation system is strongly affected by weather conditions. To make up for the defect of solar energy, energy storages such as battery and electrolyzer are usually integrated with photovoltaic cell. This paper focuses on the way to store energy surplus with battery and electrolyzer and to provide energy with battery. Photovoltaic generation system is modeled with PV cell, DC/DC converter, DC/AC inverter, battery and electrolyzer. The operation algorithm to regulate PV output power with battery and electrolyzer is suggested. The simulation results show that battery and electrolyzer effectively cooperate with each other to compensate the fluctuation of PV generation system.

A study of Comparative Analysis of CPV and PV Module through Long-term Outdoor Testing (장기 Outdoor Test를 통한 CPV와 PV 모듈의 발전량 비교분석)

  • Kim, Minsu;Lee, Yuri;Cho, Minje;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Today, photovoltaic power generation mostly uses Si crystalline solar cell modules. The most vulnerable part of the Si solar cell module is that the power generation decreases due to the temperature rise. But, it is widely used because of low installation cost. In the solar market, where Si crystalline solar cell modules are widely used. The CPV (Concentrated Photovoltaic) module appeared in the solar market. The CPV module reduces the manufacturing cost of the solar cell by using non-Si in the solar cell. Also, there is an advantage that a rise in temperature does not cause a drop in power generation. But this requires high technology to install and has a disadvantage that the initial installation cost is expensive compared to normal Si solar cell module. So that we built a testbed to see these characteristics. The testbed was used to measure the amount of power generation in a long-term outdoor environment and compared with the general Si solar cell module.

Performance Analysis of long term operation for photovoltaic system (태양광발전시스템의 장기운전에 의한 성능변화 분석)

  • Kim, EuiHwan;Kim, Jungsam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.110.1-110.1
    • /
    • 2011
  • This study analyzed the performance of long term operation photovoltaic system The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 12 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 38.0 MWh in 2010. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 8.8% in 2011. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 12 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

  • PDF

Technology Development in the Era of Photovoltaic Mass Supply (태양광 대량보급 시대의 기술개발)

  • Cho, Eun-Chel;Song, Jae Chun;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.124-132
    • /
    • 2018
  • The Korean electric power supply plan was prepared by greatly enhancing the environmental and safety with considering the economical efficiency of the electric equipment, the impact on the environment and the public safety. As a result, the fossil energy-based power generation sector is accelerating the paradigm shift to eco-friendly energy such as solar power and wind. Also the solar power industry is expected to grow into a super large-sized industry by converging the energy storage and electric vehicle industry. Generally, a levelized cost of electricity (LCOE) is used to calculate the power generation cost for different generation power generation efficiency, operating cost, and life span. In this paper, we have studied the future research and development direction of photovoltaic technology development for the era of massive utilization of photovoltaic solar power, and have studied the LCOE of major countries including China, USA, Germany, Japan and Korea. Finally we have reviewed USA and Japan research programs to reduce the LCOE.

Study of Internet Web-Based Photovoltaic Inverter Remote Control System (인터넷 웹 기반 환경에서의 태양광용 인버터 원격제어시스템 개발에 관한 고찰)

  • Choi J. Y.;Cho K. S.;Choy I.;Yu G. J.;Jung Y. S.;Kim K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.63-66
    • /
    • 2001
  • This paper aims at developing remote control system to control and monitor distributed various devices such as photovoltaic Inverter system through internet. TCP/IP (Transmission Control Protocol/Internet Protocol) and photovoltaic inverter system operated in a row are adopted for network management protocol and applied device, respectively. For controlling and monitoring distributed devices in real-time, java-environment software is constructed. Also, HelloDevice, general-use interface controller between network device and applied device is proposed. Finally, serial communication such as RS-232C is used between controller and applied device.

  • PDF

A filed operation characteristics and the controversial point of Photovoltaic power generation system (태양광 발전시스템의 현장 운전특성 및 문제점)

  • Koh, Kang-Hoon;Suh, Ki-Young;Lee, Hyun-Woo;Hong, Doo-Sung;Gang, Yeong-Cheol;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.381-383
    • /
    • 2000
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller, PLL control system and the phase detector of interactive voltage by using da transformation. The proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems (태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구)

  • Yang, Hyoung-Kyu;Bang, Taeho;Bae, Sunho;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

Monitoring and Control System for Efficient Operating and Management of Photovoltaic Power Generation System (태양광발전시스템의 효율적 운용과 관리를 위한 모니터링 및 제어 시스템)

  • Bin, Jae-Gu;Kang, Feel-Soon;Kim, Cheul-U
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.532-539
    • /
    • 2007
  • Photovoltaic power generation system is one of new renewable energy sources. Such distributed power generation system has important issues for the system management ad operating after its installation. To solve the problem, remote monitoring and control systems can be employed. In this paper, LabVBEW based monitoring and control system is proposed for efficient management and operation of the photovoltaic power generation system. Interface method between monitoring part and DSP controller is given in detail. The proposed system is verified through experiments using a grid-connected photovoltaic power generation system.

Prediction Study of Solar Modules Considering the Shadow Effect (그림자 효과를 고려한 태양전지 모듈의 발전량 예측 연구)

  • Kim, Minsu;Ji, Sangmin;Oh, Soo Young;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.80-86
    • /
    • 2016
  • Since the last five years it has become a lot of solar power plants installed. However, by installing the large-scale solar power station it is not easy to predict the actual generation years. Because there are a variety of factors, such as changes daily solar radiation, temperature and humidity. If the power output can be measured accurately it predicts profits also we can measure efficiency for solar power plants precisely. Therefore, Prediction of power generation is forecast to be a useful research field. In this study, out discovering the factors that can improve the accuracy of the prediction of the photovoltaic power generation presents the means to apply them to the power generation amount prediction.