• 제목/요약/키워드: Photovoltaic (PV) power system

검색결과 770건 처리시간 0.025초

Perez Model을 적용한 태양광 시스템 별 최적 설치 조건 및 최대 발전량 분석 (An Analysis of Optimal Installation Condition and Maximum Power Generation of Photovoltaic Systems Applying Perez Model)

  • 이재덕;김철환
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.683-689
    • /
    • 2012
  • Photovoltaic(PV) system is one of power generation systems. Solar light in PV system is like the fuel of the car. The quantity of electricity generation, therefore, is fully dependent on the available quantity of solar light on the system of each site. If a utility can predict the solar power generation on a planned site, it may be possible to set up an appropriate PV system there. It may be also possible to objectively evaluate the performances of existing solar systems. Based on the theories of astronomy and meteorology, in this paper, Perez model is simulated to estimate the available quantity of solar lights on the prevailed photovoltaic systems. Consequently the conditions for optimal power generation of each PV system can be analyzed. And the maximum quantity of power generation of each system can be also estimated by applying assumed efficiency of PV system. Perez model is simulated in this paper, and the result is compared with the data of the same model of Meteonorm. Simulated site is Daejeon, Korea with typical meteorological year(TMY) data of 1991~2010.

MATLAB 기반의 PLECS를 이용한 태양광 모델링 및 발전시스템 개발 (Development of Photovoltaic Modeling and Generation System using PLECS in MATLAB)

  • 최규영;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2379-2384
    • /
    • 2009
  • In this paper, based on MATLAB which has characteristic that is simply applied to control algorithm and source modeling, photovoltaic modeling is implemented. Photovoltaic modeling is similarly performed PV array and simulated. Also, in order to output maximum power of PV, MPPT control is simulated. Moreover, simulation of converter is performed by means of PLECS (Piece wise Linear Electrical Simulation) which is easily made schematic of power electronics. Also, we compare simulation results and Sharp PV module and Suntech PV module. Finally, informative simulation of PV generation system is provided.

태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석 (Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System)

  • 강승현;손원진;안상준;이병국
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.

태양광 발전시스템의 환경조건을 고려한 PV 모듈 구성 (PV Module Configuration Considering Environment Conditions of Photovoltaic System)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.31-41
    • /
    • 2014
  • This paper proposes the configuration of photovoltaic(PV) module considering the environment conditions of the PV system. The PV system is consisted of the series-parallel connection of the PV module. When shadows or changes of the radiation or an electrical characteristic in the solar cell are happened to PV system, the serious power loss will occur. If the PV module connected in series has the shadows, the output current is restricted to current of shaded PV module. Also if shadow is occurred to the parallel connection PV module, the output voltage is limited to voltage of shaded PV module. These problems are caused power loss. Therefore, this paper proposes the method that makes the output power of the PV module equalize by reconfiguration of PV module using the switching considering these environment conditions. A validity of the method proposed in this paper proves through comparing with performance of conventional PV module.

음영조건을 고려한 공동주택 옥상 태양광모듈의 배치계획 평가 연구 (Evaluation on the Photovoltaic Module Arrangement Planning Considering Shading Conditions in Apartment Buildings)

  • 이겨레;이윤선;임재한
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.169-179
    • /
    • 2019
  • During the initial design stage of apartment complex, the photovoltaic(PV) system has been considered as an alternative of renewable energy system and planned to install at the rooftop floor level in general. The electric power generation characteristics can be influenced by the block layout, building orientation and roof top structure because of azimuth angle, tilt angle, and partial shading. This study aims to investigate power generation characteristics of photovoltaic system in apartment buildings by considering the partial shading conditions due to the block layout, building orientation and roof-top structures. For the photovoltaic module arrangement planning in rooftop floor level, shading areas were firstly analyzed due to the adjacent building structure. And the annual and seasonal power generation of PV system were analyzed through the PVsyst simulation results. The results show that shading period at the roof top surface can be increased due to the parapet and water tank. Initial design power capacity can be decreased by considering the daily insolation period and distance between PV modules through the shading simulation. As the number of PV modules decreases, the annual power generation can be decreased. However annual power generation per unit area of PV modules can be increased and performance ratio can be increased above 80%. Also the power generation of PV system can be critically affected by building orientation and the performance ratio can be drastically decreased in east-oriented buildings due to the shading problems caused by adjacent structures at roof top level such as parapet and water tank.

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.

해석모델을 이용한 태양광모듈의 성능결과 비교분석 (Comparison Results of Photovoltaic Module Performance using Simulation Model)

  • 소정훈;유병규;황혜미;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

Novel Peak-Power Tracking Algorithm for Photovoltaic Conversion System

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeng-Pyo
    • 조명전기설비학회논문지
    • /
    • 제21권9호
    • /
    • pp.25-31
    • /
    • 2007
  • In this paper, a novel MPPT(Maximum Power Point Tracking) algorithm for power of PV(Photovoltaic) systems is presented using a boost converter for a connected single phase inverter. On the basic principle of power generation for the PV(photovoltaic) module, the model of a PV system is presented. On the basis of this model, simulation of this PV system and algorithms for maximum power point tracking are described by utilizing a boost converter to adjust the output voltage of the PV module. Based on output power of a boost converter, single phase inverter uses predicted current control to control four IGBT#s switch in full bridge. Furthermore, a low cost control system for solar energy conversion using the DSP is developed, based on the boost converter to adjust the output voltage of the PV module. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation. Finally, experimental results confirm the superior performance of the proposed method.

태양광 발전과 에너지저장시스템을 활용한 모빌리티 충전 시스템의 제어 방법 (Control Strategies of Mobility Charging Systems Using PV-ESS Systems)

  • 김대원;이현민;박성민
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.334-341
    • /
    • 2021
  • Operation modes and control strategies for single-phase mobility charging station utilizing photovoltaic (PV) generation and energy storage systems (ESS) are proposed. This approach generates electric power from PV to transmit the mobility, ESS, and then transfer it to the grid when surplus electric power is generated during daytime. However, the PV power cannot be generated during night-time, and ESS and the mobility system can be charged using grid power. The power balance control based on power fluctuations and the resonant current control that can compensate harmonic components have been added to increase the stability of the system. The MATLAB/Simulink simulation was carried out to verify the proposed control method, and the 2-kW single-phase grid-tied PV-ESS smart mobility charger was built and tested.

PV모듈 모델링에 의한 성능모의 결과비교 (Performance Simulation Results for Photovoltaic Module Modeling)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1988-1993
    • /
    • 2008
  • Photovoltaic (PV) modules operate over a large range of conditions but manufacturer's information is not sufficient to determine their overall performance. Designers need a reliable tool to predict energy production from a photovoltaic module under all conditions in order to make a sound decision. The modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of PV modules modeling by comparing measured with simulated value.