• Title/Summary/Keyword: Photovoltaic (PV) power system

Search Result 770, Processing Time 0.031 seconds

Design of Anti-Islanding Algorithm for Utility interactive Photovoltaic System (계통연계형 태양광 발전시스템에서 역충전방지 알고리즘 설계)

  • Gho, J.S.;Kim, H.S.;Choe, G.H.;Kim, H.S.;Lee, Y.J.;You, G.J.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.440-442
    • /
    • 1995
  • In a recently as renewable energy source photovoltaic(PV) system using solar energy has been very widely researched because of its pollution-free and infinity. Especially many researches are intensively focused on small scale utility interactive PV system which can use dead space and easily make power stabilized from unstable natural energy source. In this system one of the most important matters is islanding protection. Islanding phenomenon appears when power failure occurs. For the safety of utility interactive PV system must has the function of not only system protection but also detection of islanding. This paper describes parallel operating alghorithm using reactive power variation method and twin peak band pass filter. This alghorithm is verified useful by simulation.

  • PDF

IoT-based low-cost prototype for online monitoring of maximum output power of domestic photovoltaic systems

  • Rouibah, Nassir;Barazane, Linda;Benghanem, Mohamed;Mellit, Adel
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.459-470
    • /
    • 2021
  • This paper presents a low-cost prototype for monitoring online the maximum power produced by a domestic photovoltaic (PV) system using Internet of Things (IoT) technology. The most common tracking algorithms (P&O, InCond, HC, VSS InCond, and FL) were first simulated using MATLAB/Simulink and then implemented in a low-cost microcontroller (Arduino). The current, voltage, load current, load voltage, power at the maximum power point, duty cycle, module temperature, and in-plane solar irradiance are monitored. Using IoT technology, users can check in real time the change in power produced by their installation anywhere and anytime without additional effort or cost. The designed prototype is suitable for domestic PV applications, particularly at remote sites. It can also help users check online whether any abnormality has happened in their system based simply on the variation in the produced maximum power. Experimental results show that the system performs well. Moreover, the prototype is easy to implement, low in cost, saves time, and minimizes human effort. The developed monitoring system could be extended by integrating fault detection and diagnosis algorithms.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

Power Balancing Control Method of A Residential Distributed Generation System using Photovoltaic Power Generation and Polymer Electrolyte Fuel Cells (PV와 PEFC를 병용한 가정용 분산 전원 시스템의 전력평준화 제어법)

  • Yoon, Young-Byun;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.335-339
    • /
    • 2016
  • Output power in photovoltaic systems changes steeply with the change of the sun intensity. The change of output power has influence on the electric power quality of the system. This paper proposes a residential distributed generation system using photovoltaic power generation and polymer electrolyte fuel cells(hybrid systems). In order to level the output power which changes steeply the polymer electrolyte fuel cells are connected to the photovoltaic power generation system in parallel. Thus the generated power of all the system can be leveled. However, the steep generated power in the photovoltaic power generation system can not be leveled. Therefore, the electric double layer capacitor(EDLC) is connected in parallel with the hybrid systems. It is confirmed by the simulation that the proposed distributed generation system is available for a residential supply.

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

Optimum design of PV system used by parameter design method (파라미터 설계방식을 이용한 PV시스템의 최적설계)

  • Jeong, B.H.;Choi, Y.O.;Choi, M.H.;Lee, K.Y.;Baek, H.L.;Cho, G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.64-66
    • /
    • 2007
  • Photovoltaic power systems convert sunlight directly into electricity. A residential PV power system enables a homeowner to generate some or all of their daily electrical energy demand on their own roof, exchanging daytime excess power for future energy needs In this paper, It was suggested that new design method for PV system installation for the purpose of system efficiency improvement. and according to loss parameter compensation method, designed for the PV system and investigated through the simulation practically.

  • PDF

The Economics Evaluation of Grid-connected Photovoltaic Systems in Residential Houses

  • Lee, Hyun-Seung;Kim, Sung-Bum;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2015
  • Purpose: To evaluate the economic performance of grid-connected photovoltaic system in residential house, household electricity bill policy of Korea Electric Power Corporation (KEPCO) must be applied precisely, and market tendency and uncertainty of system also need to be considered. In this study, to evaluate the economic feasibility of PV system, we measured PV power generation and electricity consumption of six of Green home in Daejeon through web based remote monitoring system. Method: We applied Monte-Carlo simulation based on life cycle cost analysis, to reflect an uncertainty of main factor in economic feasibility evaluation of photovoltaic system. Result: First, with deterministic analysis, the difference of NPV of cumulative financial savings among households varied from -3,310 ~ 24,170 thousand won, portraying notably big range. Also the possibility of getting the same result was 50% when applying uncertainty. Second, the higher electricity consumption is, the more economic feasibility of photovoltaic system increases because KEPCO uses progressive taxation in household electricity bill policy. Third, The contribution to variance of electricity price increases in NPV varied from 98.5% to 99.9%. While the inflation rate and annual degradation contributed very little to none.

Fast Partial Shading Analysis of Large-scale Photovoltaic Arrays via Tearing Method

  • Zhang, Mao;Zhong, Sunan;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1489-1500
    • /
    • 2018
  • Partial shading analysis of large-scale photovoltaic (PV) arrays has recently become a theoretically and numerically challenging issue, and it is necessary for PV system designers. The main contributions of this study are the following: 1) A PSIM-based macro-model was employed because it is remarkably fast, has high precision, and has no convergence issues. 2) Three types of equivalent macro-models were developed for the transformation of a small PV sub-array with uniform irradiance to a new macro-model. 3) On the basis of the proposed new macro-model, a tearing method was established, which can divide a large-scale PV array into several small sub-arrays to significantly improve the efficiency improvement of a simulation. 4) Three platforms, namely, PSIM, PSpice, and MATLAB, were applied to evaluate the proposed tearing method. The proposed models and methods were validated, and the value of this research was highlighted using an actual large-scale PV array with 2420 PV modules. Numerical simulation demonstrated that the tearing method can remarkably improve the simulation efficiency by approximately thousands of times, and the method obtained a precision of nearly 6.5%. It can provide a useful tool to design the optimal configuration of a PV array with a given shading pattern as much as possible.

A New PSIM Model for PV Panels Employing Datasheet-based Parameter Tuning (데이터시트 기반의 새로운 PSIM 태양광 모델)

  • Park, Jun-Young;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.498-508
    • /
    • 2015
  • In the simulation of photovoltaic (PV) power conditioning systems, PSIM is a widely accepted circuit simulation platform because of its fast speed and C-code support. PSIM provides two kinds of generic PV panel models: functional model and physical model. Whereas the functional model simulates PV in the standard test condition (STC) only, the physical model can emulate changing PV characteristics under varying temperatures and irradiation conditions and is thus more suitable for system simulation. However, the physical model requires complicated parameters from users, and thus it is prone to errors and is difficult to use. In this study, a new PSIM model for PV is presented to solve these problems. The proposed model utilizes manufacturers' datasheet values specified under STC only and excludes user-defined information from input parameters. To achieve good accuracy even in varying environmental conditions, single-diode model parameters are successively tuned to a time-varying virtual datasheet. Comparison with a conventional physical model shows that the proposed model provides more accurate simulation according to error analysis based on the EN50530 standard.

Study on the Elicitation of Parameter in Designing each Capacity of PV System for Power Industry (전력산업용 PV System의 각 용량별 설계 파라미터 도출에 관한 연구)

  • Kim, ByeongMan;Lee, KilSong;Yang, YeonWon;Shin, HyunWoo;Kim, EuiHwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.78.1-78.1
    • /
    • 2010
  • Recently, as much supplied with new-renewable energy, as much invested in PV system. PV system consists of PV module, PCS and Monitering system, and also could be classified into the type and the capacity by installation method and cost etc. When various systems are installed in the field, it is needed to research for applying in the field and establish infrastructure in order to ensure stable efficiency and reliability. In this study, as the basic design of the demonstration test facility, it is designed the basic PV systems for each capacity to test each PCS. In addition, It is drew the climatic conditions such as insolation, temperature and the design parameters such as installation angle, shades for the local demonstration project and expected the generation of each PV system.

  • PDF