• Title/Summary/Keyword: Photovoltaic (PV) System

Search Result 970, Processing Time 0.034 seconds

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

A Stable Operation Strategy in Micro-grid Systems without Diesel Generators

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • Recently, as one of the countermeasures to reduce carbon dioxide($CO_2$) for global warming problems, operation methods in micro-grid systems replacing diesel generator with renewable energy sources including wind power(WP) and photovoltaic(PV) system have been studied and presented in energetic manners. However, it is reported that some operation problems in micro-grid systems without diesel generator for carbon-free island are being occurred when large scaled WP systems are at start-up. To overcome these problems, this paper proposes an operation strategy in micro-grid systems by adapting control devices such as CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage regulation, load control ESS for balancing demand and supply and SVC(static-var compensator) for reactive power compensation. From the simulation results based on the various operation scenarios, it is confirmed that the proposed operation strategy in micro-grid systems without diesel generators is a useful tool to perform a stable operation in micro-grid systems without diesel generator and also make a contribution to reduce carbon dioxide in micro-grid systems.

A novel MPPT control of photovoltaic considering insolation condition (일사량 조건을 고려한 태양광 발전의 새로운 MPPT 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1084_1085
    • /
    • 2009
  • This paper proposes a novel maximum power point tracking(MPPT) control algorithm considering insolation to improve efficiency of PV system. The propoed algorithm is composed perturb and observe(PO) method and constant voltage(CV) method. PO method is simple to realize and CV method is possible to tracking MPP with low insolation. Response characteristics of proposed algorithm is compared to conventional PO method with insolation variation. This paper proves the validity of proposed algorithm through the analysis result.

  • PDF

Design of Photovoltaic Generation System Using PLECS (PLECS를 이용한 태양광 발전시스템 설계)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1093-1094
    • /
    • 2008
  • 본 논문은 수학적 모델링이 간편하고 제어기법의 적용이 쉬운 MATLAB 기반으로 태양광 셀과 모듈을 모델링하고 기존의 P&O MPPT제어 알고리즘을 분석하고 구현하였으며 전력전자 회로의 구현이 간단한 PLCES를 사용하여 부스트 컨버터 구현하였다. 이로써 일사량 변화와 온도변화의 영향이 고려되고, MATLAB 기반이므로 시뮬레이션 시간이 단축되며, 다양한 제어기법을 쉽게 적용할 수 있는 PV 발전시스템을 구축하였으며 시뮬레이션을 통해 태양광 모델의 성능과 MPPT 제어 성능을 검증하였다

  • PDF

Control Strategy and Characteristic Analysis of PEMFC/Photovoltaics Hybrid Vehicle (연료전지-태양전지 하이브리드 자동차에 대한 제어전략 및 특성평가)

  • Ahn, Hyo-Jung;Ji, Hyun-Jin;Bae, Joong-Myeon;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.840-847
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes a proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 21 %).

Control of Parallel Operation for PV PCS (대용량 태양광 발전 시스템의 병렬운전 기법)

  • Kim, Kyutae;Kwon, Jungmin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.49.2-49.2
    • /
    • 2011
  • 본 논문에서는 대용량 태양광 PCS의 병렬운전 알고리즘에 대해 제안한다. 제안한 알고리즘은 dc-link 전압을 이용하여 PCS를 독립적으로 제어한다. 일반적으로 태양광 PCS는 정격용량 또는 그 근처에서 최대 효율을 낸다. 제안한 알고리즘은 일사량이 적을 시 일부 PCS만 작동하도록 하여 전력 변환 효율을 높인다. 항상 모든 PCS가 작동하는 것이 아니라 필요한 수량만 작동하도록 하고, 작동하는 PCS도 순차적으로 바꿔서, 전제 시스템의 수명을 늘리는 효과도 있다. 또한 일부 PCS가 고장이 날 경우 다른 PCS가 작동하도록 하여 태양광 발전이 멈추지 않고 계속 발전할 수 있도록 한다.

  • PDF

Design of Digital Voltage Mode Controller for Boost Converter in the PV system (태양광용 부스트 컨버터의 디지털 전압모드제어기 설계)

  • Lee, Seong-Hun;Lee, Ki-Ok;Choi, Ju-Yeop;Song, Seung-Ho;Choy, Ick
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.94-97
    • /
    • 2008
  • In this paper, A Digital Voltage Mode Controller is designed for the Photovoltaic power converter applications. The designed Digital Voltage Mode Controller is derived analytically from the continuous time small signal model of the boost converter. Due to the small signal model based derivations of the control law, the designed control method can be applicable to K-factor Approach method and bilinear transformation. In order to show the usefulness of a designed controller, and the simulation results are verified.

  • PDF

Output Power Analysis for Active Frequency Drift Method (AFD 기법의 출력전력 분석)

  • Lee, Ki-Ok;Choi, Ju-Yeop;Choy, Ick;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.297-302
    • /
    • 2009
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. In this paper, active frequency drift (AFD) method, one of the anti-islanding analyzed by current magnitude compensation and calculation of RMS value of the output power.

  • PDF

A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter (계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구)

  • Kim, Jinsoo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

Direct PWM control in Module Integrated Converter for photovoltaic power conditioning system (모듈 통합형 태양광 전력조절기 시스템을 위한 직접 PWM 제어 방법)

  • Moon, Sol;Kim, Do-Hyun;Kim, Chan-in;Seo, Joung-Won;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.341-342
    • /
    • 2012
  • 이 논문에서는 모듈 통합형 태양광 전력조절기 시스템을 간소화하기 위해서 인버터 스테이지 DSP에서 도통률을 결정하여 지그비를 이용한 무선방식으로 전송하고 이를 모듈에서 직접 PWM으로 변환하여 전력조절기를 제어하는 직접 PWM 제어방식을 제안하였다. 각 모듈의 전압, 전류를 지그비 모듈을 통하여 일정 간격으로 샘플링하여 그 값을 인버터 스테이지 DSP에 보내주고 MPPT 동작을 통하여 최대전력점에 해당하는 시비율을 컨버터에 다시 지그비 모듈을 통하여 무선으로 보내주는, 전압제어루프를 사용하지 않는 직접 PWM을 이용하여 부스트 컨버터를 제어하는 방법을 사용하였다. 제안하는 방식을 증명하기 위하여 50W 태양광 전력조절기, 듀얼 솔라 PV시뮬레이터 그리고 지그비 모듈을 사용하여 그 타당성을 입증하였다.

  • PDF