• Title/Summary/Keyword: Photovoltaic (PV) System

Search Result 970, Processing Time 0.027 seconds

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.

Investigation of EVA Accelerated Degradation Test for Silicon Photovoltaic Modules

  • Kim, Jaeun;Rabelo, Matheus;Holz, Markus;Cho, Eun-Chel;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2021
  • Renewable energy has become more popular with the increase in the use of solar power. Consequently, the disposal of defective and old solar panels is gradually increasing giving rise to a new problem. Furthermore, the efficiency and power output decreases with aging. Researchers worldwide are engaged in solving this problem by developing eco-module technologies that restore and reuse the solar panels according to the defect types rather than simple disposal. The eco-module technology not only solves the environmental problem, but also has economic advantages, such as extending the module life. Replacement of encapsulants contributes to a major portion of the module maintenance plan, as the degradation of encapsulants accounts for 60% of the problems found in modules over the past years. However, the current International Electrotechnical Commission (IEC) standard testing was designed for the commercialization of solar modules. As the problem caused by long-term use is not considered, this method is not suitable for the quality assurance evaluation of the eco-module. Therefore, to design a new accelerated test, this paper provides an overview of EVA degradation and comparison with the IEC and accelerated tests.

Building Integrated Photovoltaics: Technical and Aesthetic Prospects

  • Polgampola Chamani Madara;Hasnain Yousuf;Muhammad Aleem Zahid;Suresh Kumar Dhungel;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.154-163
    • /
    • 2024
  • The energy demand in the world is expected to exceed 740 million TJ by 2040 and our dependence on fossil fuels needs to be switched to sustainable and renewable energy sources like solar energy. Building Integrated Photovoltaic (BIPV) is one of the best approaches to extracting solar energy. There are more than 200 BIPV products in the market currently but when it comes to integrating these products into the technical aspects such as buildings' structural integrity, thermal, daylight retainment and aesthetic prospects to be considered. The share of BIPV integration potential of different building types in the world of residential, agricultural, industrial, commercial and other buildings account for 66%, 4.8%, 8.1%, 19.9%, and 1.2% accordingly. Many solar technologies developed to achieve architectural requirements, but the main problem is the trade-off between efficiency and aesthetic appeal, which is less than 10% in coloured and transparent solar modules. This paper discusses the different applications of solar photovoltaics (PV) in building architecture, technical requirements, and different module technologies. The article provides a comprehensive guide for researchers and designers working on the development of BIPV integrations.

The Tracking Photovoltaic System by One sensor Type (One sensor방식의 추적식 PV System)

  • Ko, Jae-Hong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4733-4739
    • /
    • 2012
  • While traditional two-axis tracking systems with double sensors had been using two sensors to control azimuth and elevation angle of the sun so that a solar cell module would make a normal line with the sun, this paper proposed a new two-axis system that can achieve the same performance with only one sensor in it. It is Two-axis tracking system that control azimuth and elevation to control to be reduced for solar cell module as proposed tracking system uses 1 sensors and the sun always forms normal. Two-axis tracking system of one sensor method that propose in paper that could reduce electric power consumption and sees than fixed type preventing action and the most efficient driving and needless drive could confirm that generation efficiency of about 23 [%] increases. To heighten efficiency of solar cell doing to receive more sunlights chasing the sun, done tracking device have proceeded a lot of studies in large size way. Therefore, is expected that will do big part in the sun tracking supply through utility study about persistent generation efficiency constructing monitoring system of the sun tracking of this paper.

A Study on Photovoltaic Generation System for Utility Interact (계통연계를 위한 태양광 발전시스템에 관한 연구)

  • Huh, Hwan;Park, Choon-Woo;Sung, Nark-Kuy;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.361-363
    • /
    • 1996
  • The output of solar cell should be operated in the maximum power point, since it is greatly fluctuated by insolation and temperature. Also, since the output of solar cell is a DC power, it needs the inverter to interact with utility line. In this paper, we made composed of PV system with a chopper that control the maximum power point and the inverter that drive to the high power factor and low harmonic by use of defected and compensated utility line voltage for synchronous phase with utility line.

  • PDF

A Study on the Development of Charging Controller in Stand-Alone PV Power Generation System (독립형 태양광 발전 시스템 충전제어기 개발에 관한 연구)

  • 곽준호;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.916-921
    • /
    • 2004
  • This paper describes microprocessor-based control of photovoltaic power conditioning system. where the microprocessor is responsible for control of output power in accordance with the generated array DC power. The microprocessor includes the control algorithm of maximum power point tracking and converter control algorithm. In this power, we have designed a MPPT(Maximum Power Point Tracker) algorithm with environment factors and a PWM(Pulse Width Modulation) algorithm for high efficiency. The controller has been tested in the laboratory with the power conditioner and shows excellent performance.

Resonance Device Design of Bidirectional DC-DC Converter for Active Power Decoupling of Photovoltaic AC Module (태양광 AC 모듈의 능동 디커플링을 위한 양방향 DC-DC 컨버터의 공진 소자 설계)

  • Kim, Mi-Na;Noh, Yong-Su;Kim, Jun-Gu;Lee, Tae-Won;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.103-104
    • /
    • 2012
  • In the AC module system, mismatch problem between AC power and constant input power is occurred. To solve this problem, electrolytic capacitor is utilized for diminishing power pulsation in PV side. However, it has disadvantages of low life span and weak in temperature. Decoupling method has been studied to reduce the capacitance and replaces electrolytic capacitor to film capacitor. This paper proposes design method for decoupling circuit which bidirectional DC-DC converter using soft switching. Proposed system is verified by design optimization and simulation results.

  • PDF

A Study Analysis on Roof BIPV System Performance of the Apartment Building (공동주택의 지붕용 BIPV시스템 성능 분석 연구)

  • Kim, Seung-Beum;Park, Jung-Lo;Kim, Joo-Heyng;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.127-128
    • /
    • 2012
  • Exhaustion of fossil fuels and continued high oil prices, global warming, climate change and to respond to the development and use of alternative energy technologies is expanding rapidly throughout the world. Recently, character of domestic building is appearing by along with economic growth, high-rise, large size, congestion. For this reason, the amount of electrical energy used in a building is increasing. In this study, the applicability of PV modules that are used as roofing and efficiency analysis, and more from the building of BIPV modules built using the activation of alternative energy sources in Korea are aimed want done.

  • PDF

High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System (에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템)

  • Jang, Doo-Hee;Ji, Sang-Keun;Park, Jung-Pil;Jung, Nam-Sung;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.399-400
    • /
    • 2010
  • 본 논문에서는 고전력 밀도 및 저가형으로 구현이 가능한 새로운 구조의 계통 연계형 태양광 인버터 시스템을 제안한다. 제안된 시스템은 태양전지의 최대 전력점 추종기능과 배터리의 충 방전 기능을 통합하여 기존 3단 구성을 2단으로 줄임으로써 시스템 제작단가가 낮아지고 고전력 밀도 구성이 가능하다. 제안 시스템의 우수성과 신뢰성 검증을 위하여 1.5kW급 PV PCS 시작품을 제작하고 이를 이용한 실험결과를 바탕으로 제안 시스템의 타당성을 검증한다.

  • PDF