• Title/Summary/Keyword: Photovoltaic (PV) System

Search Result 972, Processing Time 0.033 seconds

Analysis of the Status of Safety Management of Photovoltaic Power Generation Facilities (태양광발전설비 안전관리 현황 분석)

  • Kim, Wan-su;Park, Sang-June;An, Seong-ryeol
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, we analyzed the present status of the safety manager and safety assurance aspects through a complex analysis on the operational aspects, marketability and electrical safety aspects of photovoltaic power generation facilities. In the analysis of the equipment status, we analyzed the status and operated status of the installed PV system in Korea and the correlation between the safety manager and the accident. In addition, we analyzed the direction of the ESS through the analysis of the installation status of the ESS, and applied it to the interpretation part of the ESS associated with the solar power generation. The status of the electric safety manager can be used to analyze the data for selecting the electric safety manager by capacity by analyzing the accident status, the electric safety manager operation status, the safety management time by capacity, and the electric safety manager market.

태양광 발전 시스템을 위한 원격 통합 모니터링 시스템의 구축 및 운영분석

  • Hong, Seong-Min;Lee, Yong-Ho;Sim, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.182-190
    • /
    • 2005
  • This paper proposes central monitoring system(PVCMS) based on a TCP/IP network for effective integrating management about photovoltaic systems. We don't gain confidence the result of production simulation, because the output of PV system have many various environmental change factor. So if we can obtain real operated data about each sites and system types to use PVCMS, we can define the environment change factor to compare with simulation data. And this paper try to access about total management and data analysis methods of renewable energy through results analysis to synthesize of the operation.

  • PDF

Analysis of analog MPPT Algorithms for Low cost Photovoltaic System (저가형 태양광 발전시스템을 위한 아날로그 MPPT 알고리즘의 특성 해석)

  • Kim Han-Goo;Lee Sang-Yong;Choi Moon-Gyu;Kim Hong-Sung;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, Simple and inexpensive analog maximum power point tracker (MPPT) algorithm for photovoltaic power system and low power system of doesn't use digital signal processor (DSP). The control circuit is composed such that the actual current and voltage are sensed directly from the PV array. These two signals are then multiplied by a single-chip multiplier. The multiplier output go through different time constants genesis pulse width modulated to switch. Finally those were verified through simulation.

  • PDF

Islanding Prevention Method for Photovoltaic System by Harmonic Injection Synchronized with Exciting Current Harmonics of Pole Transformer

  • Yoshida, Yoshiaki;Fujiwara, Koji;Ishihara, Yoshiyuki;Suzuki, Hirokazu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • When large penetration of the distributed generators (DGs) such as photovoltaic (PV) systems is growing up in grid system, it is important to quickly prevent islanding caused by power system fault to ensure electrical safety. We propose a novel active method for islanding prevention by harmonic injection synchronized with the exciting current harmonics of the pole transformer to avoid mutual interference between active signals. We confirm the validity of the proposed method by performing the basic tests of islanding by using a current source superimposed the harmonic active signal. Further, we carry out the simulation using PSCAD/EMTDC, and verify the fast islanding detection.

A study on Generation Efficiency of Photovoltaics in Buildings (건물 일체화 태양광발전시스템의 입사각에 따른 발전효율에 관한 연구)

  • Kim K. B.;Lee K. Y.;Park J. M.;Park J. H.;Baek H. L.;Cho G. B.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.42-44
    • /
    • 2002
  • This paper presents a utility interactive photovoltaic generation system with the angle of inclination and direction. This paper summarizes the results of these efforts by offering a snapshot of the configuration of photovoltaic in residential applications. The status of PV system components and inter-connection and safety equipment will be summarized. also, 1'his System is able to variation the angle of inclination and direction. Hence this paper discuss only results that might be useful for generation power

  • PDF

Grid-Connected Inverter Using the Negative Conductance of Photovoltaic Power System (태양광 발전시스템의 네가티브 컨덕턴스를 이용한 계통연계형 인버터)

  • Lee, Chang-Hee;Park, Ki-Lack;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.45-48
    • /
    • 2002
  • This paper proposes a grid-connected inverter using the negative conductance of PV power system, which has four IGBTs and simple controller. Most of modern electric loads generate the current harmonics and the line voltage distortion. The new solar-to-ac converter(STAC) provides by emulating a negative conductance load to the line voltage, so the current harmonics from STAC is canceled the effect of the harmonics from other loads. As a result, the line voltage distortion is decreased. The proposed system have low cost, small size, and light weight compared to conventional photovoltaic converter

  • PDF

A study on Generation Efficiency with Variation of Solar Cell Array (태양전지어레이 가변에 의한 발전효율에 관한연구)

  • Kim, K.B.;Choi, Y.O.;Seo, J.Y.;Kim, D.H.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.247-250
    • /
    • 2002
  • This paper presents a utility interactive photovoltaic generation system with the angle of inclination and direction. This paper summarizes the results of these efforts by offering a snapshot of the configuration of photovoltaic in residential applications. The status of PV system components and inter -connection and safety equipment will be summarized. also, This System is able to variation the angle of inclination and direction. Hence this paper discuss only results that might be useful for generation power.

  • PDF

Sliding Mode Controller Applied to Coupled Inductor Dual Boost Inverters

  • Fang, Yu;Cao, Songyin;Wheeler, Pat
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • A coupled inductor-dual boost-inverter (CIDBI) with a differential structure has been presented for application to a micro-inverter photovoltaic module system due to its turn ratio of a high-voltage level. However, it is difficult to design a CIDBI converter with a conventional PI regulator to be stable and achieve good dynamic performance, given the fact that it is a high order system. In view of this situation, a sliding mode control (SMC) strategy is introduced in this paper, and two different sliding mode controllers (SMCs) are proposed and adopted in the left and right side of two Boost sub-circuits to implement the corresponding regulation of the voltage and current. The schemes of the SMCs have been elaborated in this paper including the establishment of a system variable structure model, selection of the sliding surface, determination of the control law, and presentation of the reaching conditions and sliding domain. Finally, the mathematic analysis and the proposed SMC are verified by experimental results.

Evaluation of Electricity Generation According to Installation Type of Photovoltaic System in Residential Buildings (주거용 건물 태양광발전시스템의 설치유형에 따른 발전성능 평가)

  • Kim, Deok-Sung;Kim, Beob-Jeon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • The types of installation of the photovoltaic system applied to domestic residential buildings are classified as follows: Mounted modules with air circulation, semi-integrated modules with air duct behind, integrated modules with fully insulated back. In order to study generation characteristics of PV system, we verified the validity of interpretation program based on long-term measurement data of demonstration house installed in BAPV form and also analyzed the generation characteristics and performance of each installation type. The results are as follows. First, the RMSE of amount of generation and simulation according to annual daily insolation of demonstration system located in Daejeon was 0.98kWh and the range of relative error of monthly power generation was -5.8 to 3.1. Second, the average annual PR of mounted modules was 82%, semi-integrated modules 76.1% and integrated modules 71.9%. This differences were attributed to temperature loss. Third, the range of operating temperature of annual hourly photovoltaic modules was -6.5 to $61.0^{\circ}C$ for mounted modules, $-6.0{\sim}73.9^{\circ}C$ for semi-integrated modules and -5.5 to $88.9^{\circ}C$ for integrated modules. The temperature loss of each installation type was -14.0 to 16.1%, -13.8 to 21.9%, and -13.6 to 28.5%, respectively.

Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure (철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구)

  • Yoo, Bok-Jong;Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.474-481
    • /
    • 2017
  • When designing photovoltaic power plants in Korea, the prediction of photovoltaic power generation at the design phase is carried out using PVSyst, PVWatts (Overseas power generation prediction software), and overseas weather data even if the test site is a domestic site. In this paper, for a comparative study to predict power generation using weather information, domestic photovoltaic power plants in two regions were selected as target sites. PVsyst, which is a commercial power generation forecasting program, was used to compare the accuracy between the predicted value of power generation (obtained using overseas weather information (Meteonorm 7.1, NASA-SSE)) and the predicted value of power generation obtained by the Korea Meteorological Administration (KMA). In addition, we have studied ways to improve the prediction of power generation through comparative analysis of meteorological data. Finally, we proposed a revised solar power generation prediction model that considers climatic factors by considering the actual generation amount.