• 제목/요약/키워드: Photovoltaic(PV) Industry

검색결과 70건 처리시간 0.028초

Advances in High Efficiency Back Contact Back Junction Solar Cells

  • Balaji, Nagarajan;Park, Cheolmin;Raja, Jayapal;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.45-49
    • /
    • 2015
  • In the past few decade's researchers, scientists, engineers of photovoltaic (PV) industry are working towards low cost high efficiency Si solar cells. Over the last decade the interest in back contact solar cell has been acquiring as well as a gradual introduction to industrial applications is increasing. As an alternative to conventional solar cells with a front and rear contact, the back-contact cells has remained a research topic. The aim of this work is to present a comprehensive summary of results incurred in the back contact back junction solar cells such as interdigitated back-contact (IBC), emitter wrap-through (EWT) and metallization wrap-through (MWT) over the years.

태양광발전소 운영유지보수를 위한 이기종 장비 지원 모니터링 시스템 (Heterogeneous Equipment Support Monitoring System for Operation and Maintenance of Solar power plant)

  • 임수창;홍석훈;박철영;조현욱;송법성;김종찬
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1171-1180
    • /
    • 2020
  • The number of the PV systems installed in south korea has been gradually increasing. Interest of operation & management of PV System is rising up as PV System installation trends to increase. The vital function of operation & management is the monitoring system. Most monitoring systems are only available for equipment of suppliers and manufacturers. In this study, a monitoring system was implemented to support multi-domain equipment (inverter, junction box, water distribution board, environmental sensors) that are not limited to specific manufacturers. Monitoring system includes a visualization function, which makes it easy for users to check the power generation and the operation status of the equipment of PV System. In the future, this monitoring system will be utilized as an operation & maintenance foundation element in the PV system industry.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

실리콘 태양전지의 기술현황 및 전망 (Technology Trends and Prospects of Silicon Solar Cells)

  • 박철민;조재현;이영석;박진주;주민규;이윤정;이준신
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성 (Battery Discharge System Configuration using Photovoltaic Simulator and PCS)

  • 정다움;박성민;박성미;박성준;문승필
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.

Solar Photovoltaics Technology: No longer an Outlier

  • Kazmerski, Lawrence L.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.70-70
    • /
    • 2011
  • The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is beyond a tipping point in the complex worldwide energy outlook. Truly, a revolution in both the technological advancements of solar PV and the deployment of this energy technology is underway; PV is no longer an outlier. The birth of modern photovoltaics (PV) traces only to the mid-1950s, with the Bell Telephone Laboratories' development of an efficient, single-crystal Si solar cell. Since then, Si has dominated the technology and the markets, from space through terrestrial applications. Recently, some significant shift toward technology diversity have taken place. Some focus of this presentation will be directed toward PV R&D and technology advances, with indications of the limitations and relative strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). Recent advances, contributions, industry growth, and technological pathways for transformational now and near-term technologies (Si and primarily thin films) and status and forecasts for next-generation PV (nanotechnologies and non-conventional and "new-physics" approaches) are evaluated. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, ${\ldots}$ and solar hydrogen) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. This presentation provides insights to the reasons for PV technology emergence, how these technologies have to be developed (an appreciation of the history of solar PV)-and where we can expect to be by this mid-21st century.

  • PDF

SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석 (Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg)

  • 윤희상;송형준;강민구;조현수;고석환;주영철;장효식;강기환
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

다변화 에너지원으로써의 태양광발전의 나아갈 방향 (Long-Term Strategy of Photovoltaic System as One of Outstanding Energy Source)

  • 김경수;권오은;강기환;유권종;윤순길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1404-1404
    • /
    • 2011
  • Shortage of fossil fuel energy makes current industry to find a new energy sources. One of the solutions is using the renewable energy sources like wind, sun, water, and so on. If we think with flex idea, the existing PV system's role can be greatly changed. So in this paper, I want to suggest some ideas for PV systems as one of outstanding energy source. The specific and technical explanation will be shown in the following paper in detail.

  • PDF

신재생에너지 발전 출력 예측과 경제성 종합평가 기술개발 (Development of Economic Evaluation Solution and Power Prediction of Renewable Energy System)

  • 전대성;김진영;김현구;김종현;염기웅;신기열
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.93-112
    • /
    • 2019
  • In this paper, a very new web-based software for renewable energy system (RES) design and economic evaluation was introduced. This solution would provide the precise RES estimation service including not only photovoltaic (PV), wind turbine (WT) and fuel cell (FC) individually but also energy storage system (ESS) as combined forms with PV or WT. The three reasons why we ought to develop it are: First, the standardized tool suitable to the domestic environment for estimating power generation from RES facilities and economic evaluation is required. Secondly, the standardized tool is needed to spread domestic RES supply policy and to promote the new industry in the micro-grid field. The last, the reliability of economic evaluation should be enhanced more for new facilities. To achieve those aims, the weather database of one hundred locations have established and the RES facility database has also constructed. For the energy management, mathematical models for PV, WT, ESS and FC were developed. As a final phase, the analytical process to evaluate economics has performed with field data verification.

에미터 랩쓰루 실리콘 태양전지 개발 (Current Status of Emitter Wrap-Through c-Si Solar Cell Development)

  • 조재억;양병기;이홍구;현덕환;정우원;이대종;홍근기;이성은;홍정의
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.17-26
    • /
    • 2013
  • In contrast to conventional crystalline cells, back-contact solar cells feature high efficiencies, simpler module assembly, and better aesthetics. The highest commercialized cell and module efficiency was recorded by n-type back-contact solar cells. However, the mainstream PV industry uses a p-type substrate instead of n-type due to the high costs and complexity of the manufacturing processes in the case of the latter. P-type back-contact solar cells such as metal wrap-through and emitter wrap-through, which are inexpensive and compatible with the current PV industry, have consequently been developed. In this paper the characteristics of EWT (emitter wrap-through) solar cells and their status and prospects for development are discussed.