• Title/Summary/Keyword: Photovoltaic(PV)

Search Result 1,345, Processing Time 0.03 seconds

Research on Model to Diagnose Efficiency Reduction of Inverters using Multilayer Perceptron (다층 퍼셉트론을 이용한 인버터의 효율 감소 진단 모델에 관한 연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1448-1456
    • /
    • 2022
  • This paper studies a model to diagnose efficiency reduction of inverter using Multilayer Perceptron(MLP). In this study, two inverter data which started operation at different day was used. A Multilayer Perceptron model was made to predict photovoltaic power data of the latest inverter. As a result of the model's performance test, the Mean Absolute Percentage Error(MAPE) was 4.1034. The verified model was applied to one-year-old and two-year-old data after old inverter starting operation. The predictive power of one-year-old inverter was larger than the observed power by 724.9243 on average. And two-year-old inverter's predictive value was larger than the observed power by 836.4616 on average. The prediction error of two-year-old inverter rose 111.5572 on a year. This error is 0.4% of the total capacity. It was proved that the error is meaningful difference by t-test. The error is predicted value minus actual value. Which means that PV system actually generated less than prediction. Therefore, increasing error is decreasing conversion efficiency of inverter. Finally, conversion efficiency of the inverter decreased by 0.4% over a year using this model.

Supervisory Control for Energy Management of Islanded Hybrid AC/DC Microgrid

  • Mansour, Henda Ben;Chaarabi, Lotfi;Jelassi, Khaled;Guerrero, Josep M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • This paper presents the modeling for islanded hybrid AC/DC microgrid and the verification of the proposed supervisory controller for energy management for this microgrid. The supervisory controller allows the microgrid system to operate in different power flows through the proposed control algorithm, it has several roles in the management of the energy flow between the different components of the microgrid for reliable operation. The proposed microgrid has both essential objectives such as the maximum use of renewable energies resources and the reduction of multiple conversion processes in an individual AC or DC microgrids. The microgrid system considered for this study has a solar photovoltaic (PV), a wind turbine (WT), a battery (BT), and a AC/DC loads. A small islanded hybrid AC/DC microgrid has been modeled and simulated using the MATLAB-Simulink. The simulation results show that the system can maintain stable operation under the proposed supervisory controller when the microgrid is switched from one operating mode of energy flow to another.

Building Integrated Photovoltaics: Technical and Aesthetic Prospects

  • Polgampola Chamani Madara;Hasnain Yousuf;Muhammad Aleem Zahid;Suresh Kumar Dhungel;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.154-163
    • /
    • 2024
  • The energy demand in the world is expected to exceed 740 million TJ by 2040 and our dependence on fossil fuels needs to be switched to sustainable and renewable energy sources like solar energy. Building Integrated Photovoltaic (BIPV) is one of the best approaches to extracting solar energy. There are more than 200 BIPV products in the market currently but when it comes to integrating these products into the technical aspects such as buildings' structural integrity, thermal, daylight retainment and aesthetic prospects to be considered. The share of BIPV integration potential of different building types in the world of residential, agricultural, industrial, commercial and other buildings account for 66%, 4.8%, 8.1%, 19.9%, and 1.2% accordingly. Many solar technologies developed to achieve architectural requirements, but the main problem is the trade-off between efficiency and aesthetic appeal, which is less than 10% in coloured and transparent solar modules. This paper discusses the different applications of solar photovoltaics (PV) in building architecture, technical requirements, and different module technologies. The article provides a comprehensive guide for researchers and designers working on the development of BIPV integrations.

Photovoltaic Application in System Formwork Operations of High-rise Building Construction (초고층 시스템거푸집 공사의 태양광에너지 활용 방안 연구)

  • Kim, Tae-Hoon;Lee, Myung-Do;Lee, Ung-Kyun;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2011
  • Recently, eco-friendly energy has been employed in diverse fields of industry in order to reduce environmental pollution and secure a new growth engine. In particular, practical applications of photovoltaic energy, such as building integrated photovoltaic systems, have been implemented to the construction industry based on the extensive interest in photovoltaic power as an unlimited and sustainable energy. While the construction of a high-rise building requires large amounts of energy, methods of reducing energy consumption in the construction phase have rarely been studied. Based on this motivation, the research proposes a photovoltaic based formwork system (PVFS), and then performs a design and feasibility analysis for its application to the construction of a high-rise building. Using a case study, the research implements various analyses, including area, position, and total allowable weight required by PVFS, and evaluates the influences of PVFS on the construction processes, as well as its economic feasibility. The proposed PVFS can be adopted to a real-world project in the near future, depending on the advancement of technology and economic feasibility. The results of this research will contribute to establishing a construction environment that promotes a reduction of energy consumption by using eco-friendly energy in the construction phase.

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Hybrid Technique for Locating and Sizing of Renewable Energy Resources in Power System

  • Durairasan, M.;Kalaiselvan, A.;Sait, H. Habeebullah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.161-172
    • /
    • 2017
  • In the paper, a hybrid technique is proposed for detecting the location and capacity of distributed generation (DG) sources like wind and photovoltaic (PV) in power system. The novelty of the proposed method is the combined performance of both the Biography Based Optimization (BBO) and Particle Swarm Optimization (PSO) techniques. The mentioned techniques are the optimization techniques, which are used for optimizing the optimum location and capacity of the DG sources for radial distribution network. Initially, the Artificial Neural Network (ANN) is applied to obtain the available capacity of DG sources like wind and PV for 24 hours. The BBO algorithm requires radial distribution network voltage, real and power loss for determining the optimum location and capacity of the DG. Here, the BBO input parameters are classified into sub parameters and allowed as the PSO algorithm optimization process. The PSO synthesis the problem and develops the sub solution with the help of sub parameters. The BBO migration and mutation process is applied for the sub solution of PSO for identifying the optimum location and capacity of DG. For the analysis of the proposed method, the test case is considered. The IEEE standard bench mark 33 bus system is utilized for analyzing the effectiveness of the proposed method. Then the proposed technique is implemented in the MATLAB/simulink platform and the effectiveness is analyzed by comparing it with the BBO and PSO techniques. The comparison results demonstrate the superiority of the proposed approach and confirm its potential to solve the problem.

Design of Green Community Rediscovery Center with Community Gardens and Social Integration Functions (공동체정원과 사회통합기능이 있는 Green Community Rediscovery Center의 설계)

  • Lee, Eung-Jik;Lee, Hyung-Sook;Yoon, Eun-Ju;Ekpeghere, Kalu I.;Koh, Sung-Cheol
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • The aim of this study was to study the functions and roles of Green Community Rediscovery Center (GCRC) in terms of community integration, to design GCRC with various types of green roofs, and to investigate the possibility of applying a renewable energy system (e.g., PV) to the building greenery systems. The four major functional modules for GCRC were suggested: implementation of ecopark and community gardens with environmental education programs, implementation of green housing model with education programs, Discover Science Center, and implementation of green business model with education programs. Three major functions of the center are also presented in terms of design: 1) functions of community gardens; 2) establishment of a green business model, community composting system and an urban farming system; and 3) roles of community gardens in social interactions within GCRC. GCRC provides residents with the opportunities of community gardens, urban farming based on a successful recycling system, as well as a green business model and environmental education programs near their homes. The air temperature of the green roof (utilizing Sedum sarmentosum as a cover plant) was approximately $3^{\circ}C$ lower than that of the non-green roof, indicating a potential efficiency increase in PV systems for GCRC. It was concluded that the GCRC suggested would enhance the neighborhood satisfaction, improve the quality of life and contribute to social integration and community regeneration.

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Kim, Do-Hyun;Jang, Jong-Ho;Park, Joung-Hu;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.766-778
    • /
    • 2013
  • The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

Designed of Intelligent Solar Tracking System using Fuzzy State-Space Partitioning Method (퍼지 상태 공간 분할 기법을 이용한 지능형 태양광 추적시스템 설계)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2072-2078
    • /
    • 2011
  • In photovoltaic(PV) system, for obtaining maximum efficiency of solar power systems, the solar tracking system must be controlled to match position of the sun. In this paper, we design the solar tracking system to track movement of the sun using CdS sensor modules and to determine direction of the sun under shadow of directions. In addition, for an intelligent computation in tracking of the sun, a fuzzy controller is allocated to space avaliable for splitting area of fuzzy part for the fuzzy input space(grid-type fuzzy partition) in which a fuzzy grid partition divides fuzzy rules bases. As well, a simple model of solar tracking system is designed by two-axis motor control systems and the 8-direction sensor module that can measure shadow from CdS sensor modules by matching of axis of CdS modules and PV panels. We demonstrate this systems is effective for fixed location and moving vessels and our fuzzy controller can track the satisfactorily.

A Grid-interactive PV Generation System with the Function of the Power Quality Improvement (전력품질개선기능을 갖는 계통연계형 태양광 발전시스템)

  • Ko, Sung-Hun;Cho, Ah-Ran;Kang, Dae-Up;Park, Chun-Sung;Jeon, Chil-Hwan;Lee, Seong-Ryong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.300-309
    • /
    • 2007
  • In this paper, a grid-interactive photovoltaic (PV) system with the function of the power quality improvement is presented. The proposed system requires only one current-controlled voltage source inverter, which control the current flow at low total harmonic distortion and unity power factor, as well as simultaneously provide reactive power support. The proposed system operation has been divided into two modes (sunny and night). In night mode, the system operates to compensate the reactive power demanded by nonlinear or variation in loads. In sunny mode, the system performs power quality control (PQC) to reduce harmonic current and to improve power factor as well as maximum power point tracking (MPPT) to supply active power from the PV arrays, simultaneously. To verify the proposed system a comprehensive evaluation included simulation and experimental results are presented.