• Title/Summary/Keyword: Photosynthetic responses

Search Result 183, Processing Time 0.041 seconds

Drought Tolerance in Italian Ryegrass is Associated with Genetic Divergence, Water Relation, Photosynthetic Efficiency and Oxidative Stress Responses

  • Lee, Ki-Won;Woo, Jae Hoon;Song, Yowook;Lee, Sang-Hoon;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.208-214
    • /
    • 2022
  • Drought stress is a condition that occurs frequently in the field, it reduces of the agricultural yield of field crops. The aim of the study was to screen drought-adapted genotype of Italian rye grass. The experiments were conducted between the two Italian ryegrass (Lolium multiflorum L.) cultivars viz. Hwasan (H) and Kowinearly (KE). The plants were exposed to drought for 14 days. The results suggest that the morphological traits and biomass yield of KE significantly affected by drought stress-induced oxidative stress as the hydrogen peroxide (H2O2) level was induced, while these parameters were unchanged or less affected in H. Furthermore, the cultivar H showed better adaptation by maintaining several physiological parameter including photosystem-II (Fv/Fm), water use efficiency (WUE) and relative water content (RWC%) level in response to drought stress. These results indicate that the cultivar H shows improved drought tolerance by generic variation, improving photosynthetic efficiency and reducing oxidative stress damages under drought stress. These findings can be useful to the breeder and farmer for improving drought tolerance in Italian rye grass through breeding programs.

Diversity and Function of Retinal-binding Protein in Photosynthetic Microbes

  • Jung, Kwang-Hwan
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.64-66
    • /
    • 2005
  • Photosynthetic microbes possess a wealth of photoactive proteins including chlorophyll-based pigments, phototropin-related blue light receptors, phytochromes, and cryptochromes. Surprisingly, recent genome sequencing projects discovered additional photoactive proteins, retinal-based rhodopsins, in cyanobacterial and algal genera. Most of these newly found rhodopsin genes and retinal synthase have not been expressed and their functions are unknown. Analysis of the Anabaena and Chlamyrhodopsin with retinal synthase revealed that they have sensory functions, which, based on our work with haloarchaeal rhodopsins, may use a variety of signaling mechanisms. Anabaena rhodopsin is believed to be sensory, shown to interact with a soluble transducer and the putative function is either chromatic adaptation or circadian rhythm. Chlamydomonas rhodopsins are involved in phototaxis and photophobic responses based on electrical measurements by RNAi experiment. In order to analyze the protein, we developed a sensory rhodopsin expression system in E. coli. The opsin in E. coil bound endogenous all-trans retinal to form a pigment and can be observed on the plate. Using this system we could identify retinal synthase in Anabaena PCC 7120. We conclude that Anabaena D475 dioxygenase functions as a retinal synthase to the Anabaena rhodopsin in the cell.

  • PDF

Screening Method for Photosynthetic Electron Transport Inhibitors Using Photoautotrophic Cultured Cells (광학적 자가영양 배양세포를 이용한 광합성 전자전달억제자의 간이검정방법)

  • 정형진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.245-252
    • /
    • 1993
  • To investigate a simple and rapid screening method for photosynthetic inhibitory herbicides, responses of tobacco(Nicotiana tabacum L.) and liverwort(Marchantia polymorpha L.) PA(photoautotrophic) cells to various commercial herbicides with different modes of action and leaf extracts of four weed species were compared. PET (photosynthetic electron transport) inhibitory type of herbicides has greater inhibitory effect in liverwort photoautotrophic cells than the photomixotrophic and heterotrophic cultured cells. Similary, PET inhibitory type of herbicides inhibited the oxygen evolution more in liverwort PA cells than the other type of herbicides. Based on oxygen evolution, 60% inhibition was observed by the 10% aqueous extracts of Polygonum hydropiper, while there was 100% inhibition by the 10% methanol extracts of Polygonum hydropiper. This assay gave well correlated results to the Hill reaction data using isolated thylakoids. Thus liverwort photoautotrophic cells might be suitable materials for rapid screening method for photosynthetic inhibitory herbicides.

  • PDF

Photosynthetic Response of Foliage Plants Related to Light Intensity, $CO_2$ Concentration, and Growing Medium for the Improvement of Indoor Environment (실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and $600\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) and $CO_2$ levels (0, 50, 100, 200, 400, 700, 1000, and $1500\;{\mu}mol{CO_2}{\cdot}mol^{-1}$). As a result of the photosynthetic rate of foliage plants according to change of light intensity and $CO_2$ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high $CO_2$ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high $CO_2$ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and $CO_2$ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various $CO_2$ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when $CO_2$ concentration increased. In conclusion, potential plants for the indoor air pulification and environmental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high $CO_2$ concentration.

Effect of Calcium Chloride($CaCl_2$) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii (염화칼슘 처리가 산벚나무 엽의 엽록소형광반응과 광합성기구에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.922-928
    • /
    • 2010
  • There is a little information on the effect of calcium cloride ($CaCl_2$) which is used as deicing salt in Korea on the physiological responses of the street trees. Prunus sargentii is one of the most widespread tree species of street vegetation in Korea. In this study, the effect of $CaCl_2$ on photosynthetic apparatus such as chlorophyll fluorescence image and light response curve of P. sargentii in relation to their leaf and root collar growth responses were investigated. To study the effect of $CaCl_2$ treatment in the early spring, we irrigated twice in rhizosphere of P. sargentii (3-year-old) planted plastic pots with solution of 0.5%, 1.0%, 3.0% $CaCl_2$ concentration before leaf expansion. Results after treatments, total chlorophyll contents and the chlorophyll a/b, photosynthetic rate, quantum yield, dark respiration decreased with increasing $CaCl_2$ concentration. On the contrary, light compensation point increased with increasing $CaCl_2$ concentration. Through the linear regressions of correlation of photosynthetic rate with photosynthetic parameters (quantum yield, dark respiration and light compensation point), we found a significant relationship (p<0.05) between photosynthetic rate and quantum yield and light compensation point except dark respiration. Calcium cloride ($CaCl_2$) induced inhibition of photochemical efficiency ($F_v/F_M$) and non-photochemical quenching (NPQ) were found in treatments of $CaCl_2$, and these reduction rates between control and CaCl2 treatments were drastically showed at 80 days. We suggest that physiological activities are limited from treatment of $CaCl_2$. These reductions of photosynthetic apparatus ability caused eventually the reduction of leaf and diameter at root collar growth.

Thermal Inhibition to Photosynthesis of Ginseng and Tobacco Plants (인삼과 잎담배의 광합성저해에 미치는 온도조건)

  • ;Il Hou
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.223-228
    • /
    • 1985
  • Photosynthetic inhibition to temperature were conducted with ginseng(4 year old) and tobacco(var. Bulgaria). The plants were kept under various temperature conditions from 1$0^{\circ}C$ to 4$0^{\circ}C$ and 440$\mu$E/$m^2$/sec for 3 and 6hrs, and net $CO_2$ uptake were measured after 2hrs at $25^{\circ}C$. Photosynthetic optimal leaf temperature of ginseng was 21$^{\circ}C$ and tobacco was $25^{\circ}C$. Stomatal resistance and mesophyll resistance increased at high temperature. Especially, stomatal resistance seemed to have a significant role in determining the temperature responses of photosynthesis. In tobacco photosynthetic capacity was not changed by temperature treatment for 3hrs. However, 6hrs exposure reduced 8% of net photosynthesis at 4$0^{\circ}C$ and 12% at 1$0^{\circ}C$. Ginseng plants exposed for 6hrs at 4$0^{\circ}C$ lost photosynthetic capacity by 83%. Temperature responses of ginseng were very sensitive at above-optimum temperature resulting greater thermal inhibition other than photoinhibition.

  • PDF

Changes in Growth and Physiological Characteristics of Iris laevigata Fisch. by Shading Treatment (차광처리가 제비붓꽃의 생장 및 생리적 특성에 미치는 영향)

  • Seungju Jo;Dong-Hak Kim;Eun-Ju Cheong;Jung-Won Yoon
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • In this study, we investigated the growth and physiological responses of Iris laevigata Fisch. to shading treatments in order to suggest optimal light conditions for ex-situ conservation of the northern lineage plants. For this purpose, a control plant receiving full sunlight and different shading treatments (50%, 75%, 95%) were installed, and leaf mass per area, chlorophyll content and fluorescence response, and photosynthetic characteristics were investigated. I. laevigata developed leaves with higher photosynthetic efficiency to adapt to lower light intensity as shading levels increased. Chlorophyll content increased with increasing shading levels, and leaf mass per area decreased with increasing leaf area. The chlorophyll fluorescence responses Fv/Fm and NPQ did not change with shading, and the activity of the carbon fixation system did not differ between treatments. I. laevigata exhibited a light-saturation point equivalent to that of sun plants and maintained photosynthetic capacity similar to that of controls up to 75% shading. The apparent quantum yield of I. laevigata decreased significantly at 95% shading, indicating adaptation to lower light conditions. It seems that the photosynthetic capacity of I. laevigata decreases when grown under 95% shading level compared to full sunlight, and it is judged that the longer the light is restricted by continuous shading, the more unfavorable the growth will be.

Eco-physiological Responses of Two Populus deltoides Clones to Ozone

  • Yun, Sung-Chul;Kim, Pan-Ki;Hur, Jae-Seoun;Lee, Jae-Cheon;Park, Eun-Woo
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • One-year-old cottonwood (Populus deltoides Bartr.) clones, which were classified as sensitive or tolerant, were exposed to 150 n1/1 ozone (O$_3$) over 8 days for 8 hours each day under glass chamber conditions with natural sunlight. The leaves of the sensitive clone had black stipple and bifacial necrosis after $O_3$ treatment. Photosynthesis and stomatal conductance were measured before, during, and after the $O_3$ treatment. The photosynthetic rates due to $O_3$ treatment were decreased 51 percent and 34 percent on the sensitive and tolerant clone, respectively. The stomatal conductance of the sensitive clone was more than 40 percent higher than that of the tolerant clone regardless of the $O_3$ treatment. As light intensity increased, the $O_3$ effect on photosynthesis was clear. Compared to the previous growth chamber studies, our natural light exposure system was able to maintain a stable photosynthetic responses of the control treatment throughout the fumigation period. In addition, changes in assimilation versus intercellular $CO_2$ concentration (A/C curves) showed that $O_3$ decreased the slope and asymptote of the curves for the sensitive clone. This indicates that $O_3$ decreases the biochemical capacity of photosynthesis on the sensitive clone. Chlorophyll contents and fluorescence of the two clones were analyzed to examine the $O_3$ effects on photosystem 11, but $O_3$ did not impact these variables on either clone. Although the tolerant clone did not show any foliar injury, we could not find any ecophysiological defensive responses to $O_3$ treated. Stomatal conductance of the tolerant clone was originally much lower than that of the sensitive one. Thus, the mechanisms of the tolerant clone in this system are to narrowly open stomata and efficiently maintain photosynthesis with a more durable biochemical apparatus of photosynthesis under $O_3$ stress. The sensitive clone has higher photosynthetic capacity and more efficient light reaction activity than the tolerant one under charcoal filtered condition, but is not as resilient under stress.

  • PDF

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.