• Title/Summary/Keyword: Photosynthetic rate

Search Result 610, Processing Time 0.032 seconds

Growth, Photosynthesis and Zinc Elimination Capacity of a Sorghum-Sudangrass Hybrid under Zinc Stress (고농도 아연 조건에서 수수-수단그라스 교잡종의 생장, 광합성 및 아연 제거능)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1143-1153
    • /
    • 2016
  • Plant biomass, photosystem II (PSII) photochemical activity, photosynthetic function, and zinc (Zn) accumulation were investigated in a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense) exposed to various Zn concentrations to determine the elimination capacity of Zn from soils. Plant growth and biomass of the sorghum-sudangrass hybrid decreased with increasing Zn concentration. Symptoms of Zn toxicity, i.e., withering and discoloration of old leaves, were found at Zn concentrations over 800 ppm. PSII photochemical activity, as indicated by the values of $F_v/F_m$ and $F_v/F_o$, decreased significantly three days after exposure to Zn concentrations of 800 ppm or more. Photosynthetic $CO_2$ fixation rate (A) was high between Zn concentrations of 100-200 ppm ($22.5{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$), but it declined as Zn concentration increased. At Zn concentrations of 800 and 1600 ppm, A was 14.1 and $1.8{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The patterns of stomatal conductance ($g_s$), transpiration rate (E), and water use efficiency (WUE) were all similar to that of photosynthetic $CO_2$ fixation rate, except for dark respiration ($R_d$), which showed an opposite pattern. Zn was accumulated in both above- and below-ground parts of plants, but was more in the below-ground parts. Magnesium (Mg) and iron (Fe) concentrations were significantly low in the leaves of plants, and symptoms of Mg or Fe deficiency, such as a decrease in the SPAD value, were found when plants were treated with Zn concentrations above 800 ppm. These results suggest that the sorghum-sudangrass hybrid is able to accumulate Zn to high level in plant body and eliminate it with its rapid growth and high biomass yield.

Changes in SPAD Value and Phothosynthetic Rate during Grain Filling of Oryza glaberrima Strains and Oryza sativa Cultivars (Oryza glaberrima 계통과 Oryza sativa 품종의 등숙기간중 SPAD치와 광합성속도의 변화)

  • 윤영환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.759-765
    • /
    • 1997
  • The process of the senescence in Oryza glaberrima Steud. strains and Oryza sativa L. cultivars were examined in terms of SPAD value(chlorophyll content) and photosynthetic rate. SPAD values and photosynthetic rates of flag leaves for 10 genotypes of each species was measured at the 1, 3 and 5 weeks after heading. SPAD values and photosynthetic rates of O. glaberrima strains tended to decrease rapidly after heading. O. sativa cultivars showed slower decrease as compared to O. glaberrima strains, in particular during the period from 1 to 3 weeks after heading. Although there was no significant difference between the two species in the mean value of photosynthetic rate and SPAD value at 1 weeks after heading, O. glaberrima had lower values after 3 weeks after heading. There were significant positive correlation coefficients between the photosynthetic rate and the SPAD value at 1 and 3 weeks after heading for O. glaberrima strains, and at 1 and 5 weeks after heading for O. sativa cultivars. There were significant positive correlation between the decreasing rates of the photosynthetic rates and the decreasing rates of the SPAD values at the period from the 1 to 3 weeks after heading for both species. At the period from 3 to 5 weeks after heading, only O. glaberrima showed a significant correlation between two traits, indicating that rapid decrease in chlorophyll content would affect the photosynthesis in O. glaberrima.

  • PDF

Effects of Shading on Photosynthetic Response and Growth Characteristics in Hydroponics for Wasabi Leaf Production (고추냉이 잎 수경재배시 차광정도가 광합성 특성 및 생육에 미치는 영향)

  • Lee, Joo-Hyun;Nasangargale, T.;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • The wasabi was planted in glasshouse to investigate the effect shade level (0, 10, 30, 70%) on growth and photosynthetic response. The net photosynthetic rate and stomatal conductance were the highest under 10% shading rate in greenhouse. The lowest transpiration rate was in the non-shading treatment. 70% shading rate significantly reduced in photosynthetic characteristics. The number of leaf was decreased with increasing of shading rate. Leaf and petiole weight was the highest 10% shading and then followed by the non-shading treatment. Number of leaves, leaf, petiole and total weight were severely declined in 70% shading treatment. Shading rate (0%, 10%, and 30%) did not significantly influenced on the leaf length, leaf width and root growth. 10% shading level was the most effective for wasabi leaf production in hydroponics.

Physiological Differences of Ilex rotunda and Illicium anisatum under Low Light Intensities (다른 광도에서 생육한 먼나무, 붓순나무의 생리적 차이)

  • Son Seog-Gu;Je Sun-Mi;Woo Su-Young;Byun Kwang-Ok;Kang Young-Je;Kwang Byung-Seo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • We examined seedlings of two species (Ilex rotunda and Illicium anisatum) which have a different level of shade tolerance and raised them under different light regimes (full sunlight and 50% shading). After 12 months, we investigated chlorophyll content (Chl. a, Chl. b and Chl. a+b), photosynthetic systems (photosynthetic rate, light compensation point, dark respiration rate and quantum yield), intercellular $CO_2$ concentration and water use efficiency to show acclimation reaction to different light conditions. Seedlings grown under full sunlight showed lower chlorophyll content than those in the shading regime. There was a significant difference between the full sunlight and shade treatments in I. anisatum (shade tolerance species). I. rotunda (intermediate species) showed high photosynthetic rate and water use efficiency over PPFD $1000\;{\mu}mol\;m^{-2}s^{-1}$ to full sunlight. Also, I. anisatum grown under full sunlight showed lower photosynthetic rate and water use efficiency over a range of all PPFD. This result showed that I. rotunda has a more flexible reaction system than that of I. anisatum.

Simple Monodimensional Model for Linear Growth Rate of Photosynthetic Microorganisms in Flat-Plate Photobioreactors

  • Kim, Nag-Jong;Suh, In-Soo;Hur, Byung-Ki;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.962-971
    • /
    • 2002
  • The current study proposes a simple monodimensional model to estimate the linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors (FPPBRs) during batch cultivation. As a model microorganism, Chlorella kessleri was cultivated photoautotrophically in FPPBRs using light-emitting diodes (LEDs) as the light sources to provide unidirectional irradiation in the photobioreactors. Various conditions were simulated by adjusting both the intensity of the light and the height of the culture. The validity of the proposed model was examined by comparing the linear growth rates measured with the predicted ones obtained from the proposed model. Accordingly, the value of $\frac{K\cdot\mu m}{\alpha\cdot L}log(I_0\cdot{I_s}^{\varepsilon 1)\cdot {I_c}^{-\varepsilon})$ was proposed as an approximate index for strategies to obtain the maximal lightn yield under light-limiting conditions for high-density algal cultures and as a control parameter to improve the photosynthetic productivity and efficiency.

Improvement of Drought Tolerance in Transgenic Tobacco Plant (형질전환 담배의 내건성 개선)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

Growth and Photosynthetic Responses of Cuttings of a Hybrid Larch (Larix gmelinii var. japonica x L. kaempferi) to Elevated Ozone and/or Carbon Dioxide

  • Koike, Takayoshi;Mao, Qiaozhi;Inada, Naoki;Kawaguchi, Korin;Hoshika, Yasutomo;Kita, Kazuhito;Watanabe, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • We studied the effects of elevated ozone ([$O_3$]) and $CO_2$ concentrations ([$CO_2$]) on the growth and photosynthesis of the hybrid larch $F_1(F_1)$ and on its parents (the Dahurian larch and Japanese larch). $F_1$ is a promising species for timber production in northeast Asia. Seedlings of the three species were grown in 16 open top chambers and were exposed to two levels of $O_3$ (<10 ppb and 60 ppb for 7 h per day) in combination with two levels of $CO_2$ (ambient and 600 ppm for daytime) over an entire growing season. Ozone reduced the growth as measured by height and diameter, and reduced the needle dry mass and net photosynthetic rate of $F_1$, but had almost no effect on the Dahurian larch or Japanese larch. There was a significant increase in whole-plant dry mass induced by elevated [$CO_2$] in $F_1$ but not in the other two species. Photosynthetic acclimation to elevated [$CO_2$] was observed in all species. The net photosynthetic rate measured at the growing [$CO_2$] (i.e. 380 ppm for ambient treatment and 600 ppm for elevated $CO_2$ treatment) was nevertheless greater in the seedlings of all species grown at elevated [$CO_2$]. The high [$CO_2$] partly compensated for the reduction of stem diameter growth of $F_1$ at high [$O_3$]; no similar trend was found in the other growth and photosynthetic parameters, or in the other species.

Effects of Elevated $CO_2$ on Maize Growth

  • Kim, Young-Guk;Cho, Young-Son;Seo, Jong-Ho;Kim, Sok-Dong;Shin, Jin-Chul;Park, Ho-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.93-101
    • /
    • 2008
  • The effects of $CO_2$ enrichment on growth of maize (Zea mays L.) were examined. Parameters analyzed include growth characteristics, yields, photosynthetic rates, evaporation rates and photosynthesis-related characteristics under elevated $CO_2$. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ at the seedling stage and $30/23^{\circ}C$ from the silking stage. The plants were exposed to two elevated $CO_2$ of 500, 700ppm and ambient levels (350 ppm). Chalok 1 and GCB 70 germinated three days after seeding, and germination rates were faster in the elevated $CO_2$ than the control. Germination rates displayed significant differences among the $CO_2$ treatments. At the seedling stage, leaf area, top dry weight, and photosynthetic rates, and plant height indicated positive relationship with elevated $CO_2$ concentrations. At the $5{\sim}6$ leaf stage, $CO_2$ concentration also indicated positive relationship with plant height, leaf area, top dry weight, and photosynthetic rates. At the silking stage, increased plant height of Chalok 1 was noted in the $CO_2$ treatments compared to the control. No significant differences were noted for GCB 70, in which leaf area decreased but photosynthetic rates increased progressively with $CO_2$ concentration. Stomatal aperture was a little bigger in the elevated $CO_2$ than the control. $CO_2$ concentration was negatively related to stomatal conductance and transpiration rates, resulting in high water use efficiency.

Light-Dependent Chilling Injury on the Photosynthetic Activities of Cucumber Cotyledons (저온처리한 오이의 자엽에서 광합성 활성의 광의존성 저해)

  • 김현식
    • Journal of Plant Biology
    • /
    • v.36 no.2
    • /
    • pp.133-140
    • /
    • 1993
  • The photosynthetic activities in relation to oxygen evolution rates, quantum yield, CO2 uptake rates and room temperature chlorophyll fluorescence were investigated in cotyledons of cucumber seedlings exposed to low temperature (at 4$^{\circ}C$) for 24 h. Light-chilling caused more inhibition on light-saturated maximum oxygen evolution rates, quantum yield, and CO2 uptake rates than dark-chilling did in the cucumber plant. Light-chilling induced more marked increase in Fo and decrease in (Fv)m/Fm than dark-chilling did in the room temperature chlorophyll induction kinetics. The above results affected by chilling in the light are considered to be associated with the partial damage of the reaction center of PS II and the decreased photosynthetic activities. There occurred a large decrease in qQ with little change in qNP in the light-chilling plant. When light- and dark-chilled plants were recovered at room temperature for 24 h and their chlorophyll fluorescences were induced with light doubling technique, light-chilled plants showed more smaller magnitude and rate of fluorescence relaxation than dark-chilled plants. These suggest that light-chilling might cause some alterations in transthylakoid pH formation, and that photosynthetic apparatus of cucumber cotyledons is more susceptible to light-chilling. In the fast fluorescence induction kinetics, FR was decreased by 60% in the light-chilled plants with reference to $25^{\circ}C$ light-grown plants, while the dark-chilled plants showed a decreased rate of only 20% with reference to $25^{\circ}C$ dark-treated plants for 24 h, indicating that cucumber seedling is very sensitive to chilling stress. So, it is certain that chilling injury to the photosynthetic apparatus is strongly dependent on the presence of light in cucumber seedlings.

  • PDF

Photosynthetic Characteristics of Korean Endemic Plant, Aster koraiensis Nakai According to Growth and Development Conditions (생육환경에 따른 한국특산식물 벌개미취의 광합성 특성)

  • Nam, Hyo-Hoon;Son, Chang-Ki;Lee, Joong-Hwan;Kwon, Jung-Bae
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • This study was conducted to elucidate the photosynthetic response to the environment and establish optimum cultivation conditions for the Korean endemic plant, Aster koraiensis. Photosynthetic characteristics according to growth stage, light, CO2, and soil water potential were investigated. During the first year of transplanting, photosynthetic rates were drastically increased until June, after which they slowly declined, During the second year, photosynthetic rates declined throughout the entire growth period. The highest level of light compensation point was shown the early growth stage. Photosynthetic rates affected by intercellular CO2 concentration were maintained or decreased over the CO2 saturation point. The lowest CO2 compensation point was 16.1 μmol·mol−1 during March. The morphological changes of leaves were observed due to shading with chlorophyll contents increasing. Photosynthetic rates were higher at 0% and 50% shading treatments than at 75%. There were rarely any morphological changes of leaves due to soil moisture, however, changes to leaf compactness were observed. Photosynthetic rate, apparent quantum yield, and respiration rate increased, whereas water use efficiency decreased over −25 kPa of soil moisture.