• Title/Summary/Keyword: Photosynthetic bacteria

Search Result 120, Processing Time 0.028 seconds

Studies on Physiological Nitrogen Fixation -II. Effects of soil physical properties-soil texture, soil type, drainage and agricultural locality-on the changes of photo synthetic and aerobic heterotrophic nitrogen fixing activity (생리학적(生理學的) 질소고정(窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 답토양(畓土壤)의 물리적특성(物理的特性)-답류형(畓類型), 토성(土性), 배수정도(排水程度), 농업기후대(農業氣候帶)-이 광합성(光合成) 및 타양성질소고정력(他養性窒素固定力)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Lee, Myeong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 1987
  • A green house experiment was conducted to find out the acetylene reducing and $N_2$-fixing activity from photosynthetic and aerobic heterotrophic nitrogen fixing microorganisms in submerged paddy soil under different agricultural locality, soil series, soil texture, soil type, and drainage condition in which samples taken from without nitrogen treatment plot of NPK trials on 16 sites of the farmer's field. The results obtained were summarized as follows: 1. The highest acetylene reducing activity was observed at 7 days after incubation in the light condition (photo synthetic microbes+heterotrophic bacteria) while it was observed at 35 days incubation in the dark condition (heterotrophic bacteria). 2. Among the soil series, photosynthetic nitrogen fixing activity was pronounced more in Jangae, Ogcheon and Hwadong series while lower was obtained in Buyong and Daejeong series. Aerobic heterotrophic nitrogen fixing activity was high in Buyong and Daejong series. 3. Estimated amount of $N_2$-fixation from acetylene reducing activity was equivalented to 3.0 mg in light condition and 4.9 mg/100g/105 days in dark condition. 4. Among the agricultural locality, photosynthetic nitrogen fixing activity was high in rather warm southern part while heterotrophic nitrogen fixing activity was predominated more in mountainous area and Chungcheong continental. 5. Photosynthetic nitrogen fixing activity was predominated in high productive soil while aerobic heterotrophic nitrogen fixing activity was pronounced more in crose coarse sandy soil. 6. The soils properties of high photosynthetic nitrogen fixing activity were constituted of poorly or imperfectly drained clay or clay loam soil while heterotrophic nitrogen fixing activity was pronounced more in well to moderately well drained sandy or sandy loam soil.

  • PDF

Genetic Analysis and its Application of Rhodosprillum rubrum PKY1 Plasmid (Rhodospirillum rubrum Plasmid pKY1의 유전정보 분석과 그의 활용에 관한 연구)

  • 김복환;김정목
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.172-177
    • /
    • 2004
  • Photosynthetic bacteria, Rhodospirillum rubrum, have been reported to change their metabolic patterns depend-ing on the light condition. The genetic approach for such a metabolic change is one of main subject in pho-tosynthetic bacteria. It has been reported that the extrachromosomal plasmid might be related to this metabolic regulation. In this study, we have determined the partial sequences of R. rubrum plasmid pKYl with HindIII fragments and the predicted pKYl ORFs and physical map. We found the 8 putative proteins related to the genetic recombination of bacterium, which is reported to the alternative gene expression. Our results suggest that the genes located in pKYl are possibly involved in the metabolic switch according to the photocondition.

Influence of light intensity and photo-bioreactor design for photo biological hydrogen production by Rhodobactor sphaeroides (Rhodobactor sphaeroides의 수소생산에 미치는 광세기 및 광합성 배양기 영향)

  • Kim, Mi-Sun;Baek, Jin-Sook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.166-174
    • /
    • 2004
  • Purple non-sulfur bacteria, Rhodobacter sphaeroides KD131 grew to reach the maximum cell concentration in 45 hrs of incubation in the synthetic media containing (NH4)2SO4, L-aspartic acid and succinic acid as the carbon and nitrogen sources, respectively, at 30oC under 8 klux irradiance using halogen lamp. The strain produced hydrogen from the middle of the logarithmic growth phase and continued until the cell growth leveled out. The strain grew and produced hydrogen under the irradiance of 3-30 klux, but cell growth was inhibited over 100 klux. In addition, anaerobic/light culture condition was better than the aerobic/dark on the hydrogen production. Among various photo-bioreactors examined, the flat-vertical reactor manufactured using clear acrylic plastic material showed the best hydrogen production rate at the given culture condition.

Effect of R. leguminisarum Pre-incubated with Inducers, Naringenin and Methyl-jasmonate, on Nitrogen Fixation and the Growth of Pea at Different Salinity Levels

  • Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.362-367
    • /
    • 2008
  • The legume-rhizobia symbiosis is an important source of plant growth and nitrogen fixation for many agricultural systems. This study was conducted to investigate the effects of salinity stress on nitrogen fixation and growth of pea (Pisum sativum L.), which has antimutagenic activities against chemical mutagen, inoculated with R. leguminosarum bv. viciae cultured with additional plant-to-rhizobia signal compounds, naringenin (NA,15 uM), methyl-jasmonate (MJ, 50 uM) or both, under greenhouse conditions. Three salinity levels (0.6, 3.0 and $6.0\;dS\;m^{-1}$) were imposed at 3 days after transplanting and maintained through daily irrigations. Addition of signal compounds under non-stress and stress conditions increased dry weight, nodule numbers, leaf area and leaf greenness. The inducers increased photosynthetic rate under non-stress and stress conditions, by approximately 5-20% when compared to that of the non-induced control treatment. Under stress conditions, proline content was less in plants treated with plant-to-bacteria signals than the control, but phenol content was significantly increased, compared to that of the control. The study suggested that pre-incubation of bacterial cells with plant-to-bacteria signals could enhance pea growth, photosynthesis, nitrogen fixation and biomass under salinity stress conditions.

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field (경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향)

  • An, Chang-Hwan;Lim, Jong-Hui;Kim, Yo-Hwan;Jung, Byung-Kwon;Kim, Jin-Won;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.

Removal of Nitrogenous Compounds by Immobilized Mixed Microorganisms Including Photosynthetic Bacteria (광합성 세균을 포함한 고정화 복합미생물에 의한 질소성분 제거)

  • Cho, Kyoung Sook;Kim, Jeong Bo;Jeong, Soo Kyoung;Jeong, Hae Yoon;Cho, Jeong Sub;Kim, Joong Kyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2006
  • For efficient removal of nitrogenous compounds produced in recirculating aquaculture system, the N removal characteristics of immobilized mixed microorganisms were investigated at various mixing ratios of photosynthetic bacteria (PSB) immobilized in PVA beads or CTA cubes and ammonium utilizing bacteria (AUB) immobilized in PVA beads. On the optimal medium of AUB, the maxium gas production rate was obtained at the mixing ratio of 10:40 (PSB:AUB), and the gas production rate increased as the portion of AUB beads in the mixed beads increased. When the mixing ratios of PSB:AUB beads were 50:0, 40:10, 25:25 and 10:40, the final pHs were measured to be 6.29, 6.01, 5.69 and 5.13, respectively. On the optimal medium of PSB, however, the volume and the rate of gas production decreased remarkably as the portion of AUB beads in the mixed beads increased. The final pH was measured to be approximately 6.5, regardless of the mixing ratio. In the reactions by the mixed culture of PSB cubes and AUB beads, all results showed the same tendency of those by the mixed culture of PSB and AUB beads, but the volume and the rate of gas production decreased remarkably, even with 0.2ml of gas production in control. From all the results, the use of mixed PSB and AUB beads at the ratio of 10:40 seems to be efficient to remove nitrogenous compounds in wastewater from recirculating aquaculture system.

  • PDF

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Effects of Butachlor on the Growth of PurpleNnon-sulfur Bacteria (홍색 비유황광합성 세균에 미치는 제초제 Butachlor의 영향)

  • 이경미;이현순
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.130-135
    • /
    • 1991
  • The effects of a herbicide butachlor[2-chloro-2', 6'-diethyl-N-(butoxymethyl) acetanilide] on the growth of the purple non-sulfur bacteria were investigated. The butachlor inhibited the growth of all species tested by 18-51%, except Rhodospirillum rubrum at concentrations of M, which would be field capacity. The photosynthetic growth rate of the species in the presence of butachlor was influenced by the nitrogen source. Cultures supplied with (NH&S04 showed a somewhat higher growth rate than those fixing dinitrogen, but they were more susceptible to butachlor (26-51%). On the contrary, butachlor enhanced the growth rate of Rhodospirillum rubrum in nitrogen gas conditions. When the culture was performed in medium with butachlor as the carbon source, the cells of fixing dinitrogen showed a higher exhaustion of butachlor than those supplemented with (N&)2S04, which exhaustion was examined by a decrease of the major absorbance at 213 nm and 260 nm. The exhaustion of butachlor as the carbon source had relation with the growth of the cells. The alkalization of culture supplemented with nitrogen gas was found in the cells treated with butachlor or untreated. The butachlor affected the carotenoid region but bacteriochlorophyll remained unaffected.

  • PDF

Identification and expression of leuD Gene in Rice (Oryza sativa L.) (벼(Oryza sativa L.)의 leuD 유전자)

  • Lee, Eun-Tag;Kang, Sang-Gu
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.772-777
    • /
    • 2007
  • A rice OsLeuD gene for small subunit of 3-isopropylmalate isomerase (IPMI) (EC 4.2.1.33) has been isolated. OsLeuD gene is located on 109.3 cM of chromosome 2. OsLeuD gene was expressed abundantly in metabolically active organs including leaves and developing seeds, indicating that OsLeuD gene expression is developmentally regulated. The cDNA of OsLeuD gene was coded for 257 amino acids which showed 58% and 48% homology to small subunits of IPMI in OsLeuD genes of cyanobacteria and green sulfur bacteria, respectively. The molecular character of OsLeuD is closely related to those of photosynthetic bacteria rather than those of eukaryotes including fungi and yeast. This suggests that OsLeuD gene in chromosomal genome of plants may possibly be originated from chloroplast genome.

Photoadaptation of Green Sulfur Photosynthetic Bacteria Chlorobium phaeobacteroides

  • Hirabayashi, Hiroki;Ohmura, Satoshi;Ishii, Takasada;Takaichi, Shinichi;Uehara, Kaku
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.364-366
    • /
    • 2002
  • Photoadaptation of Chlorobium (Cb.) phaeobacteroides was investigated under dim and strong light intensity. Absorption spectra of these whole cellIs were different each other. The Soret band intensity and the Qy bandwidth of BChl e in c디l grown under dim light intensity were smaller and more broadened than those under strong light intensity. From HPLC analysis of the pigments, total carotenoid (Car) / bacterochorolphyll (BChl) e ratio of cell increased wi1h increase of light intensities. But camposition of BChl e hamologs almost unchanged. Cb. phaeobacteroides contains 11 kinds of Car including isorenieratene and beta-isorenieratene as major Car. The campositions of Car were different for cells grown under dim and strong light intensities. In conclusion, Cb. phaeobacteroides changes total amount and canposition of Car to adapt various light intensities, while homolog canposition of BChle unchange.

  • PDF