• Title/Summary/Keyword: Photosynthesis rate

Search Result 464, Processing Time 0.035 seconds

Photosynthesis and Regrowth of Leaf in Sorghum-Sudangrass Hybrid, Pearl Millet, and Barnyard Millet after 2nd Cutting (청예용 수수-수단 그라스 잡종, 진주조, 사료용 피의 후기 생육에서 재생엽의 생장과 광합성)

  • 이호진;김태훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.466-476
    • /
    • 1993
  • Field experiment was carried out to study the new and old leaf development and photosynthesis of sorghum-sudangrass hybrid 855F, pearl millet Suwon No.6 and barnyard millet in cutting and non-cutting plots from the 2nd cutting day(September, 17th). Leaf regrowth of sorghum-sudangrass hybrid and pearl millet begun after the 2nd cutting day, except barnyard millet. Photosynthetic rate of new leaf blades in cutting plots reached to higher level than old leaf at 12th to 20th day after cutting(DAC). Stomatal density of leaf blade of each crop in non-cutting plot was observed higher pearl millet and sorghum-sudangrass hybrid than barnyard millet. New leaf blade of each crop in cutting plot was showed complete development in stomata size, form and vascular bundles in 12th DAC. Non-structural carbohydrates(NSC) contents of stembase in sorghum-sudan hybrid which had 17 %, the highest among three forages decreased daily into 8th DAC and begun to increase from 20th DAC. But, those of pearl millet and barnyard millet in cutting plots were about 10 % at cutting day and inclined to decrease continuously into the 20th DAC and reached about 3~4% in 32nd DAC. These results showed that regrowth energy of sorghum-sudangrass hybrid was mainly dependent on non-structural carbohydrates of stembase until 12th DAC, but pearl millet had active lower leaves supported its regrowth by concurrent photosynthesis. As barnyard millet which did not reserve enough NSC, its regrowth fail to survive under low temperature. Also, late regrowth of rest two forage crops was delayed with decreasing daily temperature after mid-September.

  • PDF

Growth and Photosynthetic Responses of Cuttings of a Hybrid Larch (Larix gmelinii var. japonica x L. kaempferi) to Elevated Ozone and/or Carbon Dioxide

  • Koike, Takayoshi;Mao, Qiaozhi;Inada, Naoki;Kawaguchi, Korin;Hoshika, Yasutomo;Kita, Kazuhito;Watanabe, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • We studied the effects of elevated ozone ([$O_3$]) and $CO_2$ concentrations ([$CO_2$]) on the growth and photosynthesis of the hybrid larch $F_1(F_1)$ and on its parents (the Dahurian larch and Japanese larch). $F_1$ is a promising species for timber production in northeast Asia. Seedlings of the three species were grown in 16 open top chambers and were exposed to two levels of $O_3$ (<10 ppb and 60 ppb for 7 h per day) in combination with two levels of $CO_2$ (ambient and 600 ppm for daytime) over an entire growing season. Ozone reduced the growth as measured by height and diameter, and reduced the needle dry mass and net photosynthetic rate of $F_1$, but had almost no effect on the Dahurian larch or Japanese larch. There was a significant increase in whole-plant dry mass induced by elevated [$CO_2$] in $F_1$ but not in the other two species. Photosynthetic acclimation to elevated [$CO_2$] was observed in all species. The net photosynthetic rate measured at the growing [$CO_2$] (i.e. 380 ppm for ambient treatment and 600 ppm for elevated $CO_2$ treatment) was nevertheless greater in the seedlings of all species grown at elevated [$CO_2$]. The high [$CO_2$] partly compensated for the reduction of stem diameter growth of $F_1$ at high [$O_3$]; no similar trend was found in the other growth and photosynthetic parameters, or in the other species.

Physiological Responses of Calystegia soldanella under Drought Stress

  • Bae, Chae-Youn;Hwang, Jeong-Sook;Bae, Jeong-Jin;Choi, Sung-Chul;Lim, Sung-Hwan;Choi, Deok-Gyun;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.255-265
    • /
    • 2013
  • This study was conducted to determine the extent of drought resistance based on physiological responses of Calystegia soldanella under water deficit. In order to investigate the changes of plant growth, stomatal density, photosynthesis, chlorophyll fluorescence, the contents of chlorophyll and carotenoid, osmolality, total ion contents, the contents of carbohydrate and proline, C. soldanella was grown under well watered and drought stressed conditions for 12 days. In this study, water-deficit resulted in remarkable growth inhibition of C. soldanella. The effect of water-deficit on plant growth was associated with low osmotic potential of soil. On day 12 after drought treatment, dry weight, relative water contents, number and area of leaves and stem length were lower than those of control. The stomatal conductance and net photosynthetic rate were significantly reduced in water stressed plant to regulate inner water contents and $CO_2$ exchange through the stomatal pore. Chlorophyll fluorescence and chlorophyll contents were not different in comparison with the control, indicating that the efficiency of photosystem II was not affected by drought stress. This results could be explained that water-deficit in C. soldanella limits the photosynthetic rate and reduces the plant's ability to convert energy to biomass. A significant increase in total ion contents and osmolality was observed on day 7 and day 12. Accumulation of proline in leaves is associated with the osmotic adjustment in C. soldanella to soil water-deficit. Consequently, this increase in osmolality in water stressed plant can be a result in the increase of ion contents and proline.

Effect of Changes of Leaf Water Content on Respiration and Photosynthetic Rate of Tobacco Varieties (엽중수분 변화가 잎담배 품종간 호흡과 광합성속도에 미치는 영향)

  • Seong-Kook Bae;Ryuichi, Ishii;Atsuhiko, Kumura
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.347-351
    • /
    • 1985
  • The effect of leaf water content on apparent photosynthesis and respiration of tobacco plants(five varieties) was studied under the condition without the irrigation for 10 days after the plants were sufficiently watered on the first day. The wild race (N. longiflora) among varieties showed highest apparent photosynthesis (AP) and AP had a positive correlation with specific leaf weight. N. longiflora and Andongyeob were different in their AP from the other varieties significantly under the water stress condition. Respiration rate also decreased to be simillar to AP except slight increase at early stage of water deficit. The stomatal resistance and the mesophyll resistance increased in the stressed plants. The water stress resistant character seems to be mainly due to open stomata.

  • PDF

Effects of Shading Treatments on Photosynthetic rate and Growth in Codonopsis lanceloata Trautv. (차광처리가 더덕의 광합성율과 생육에 미치는 영향)

  • Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.152-156
    • /
    • 2007
  • The Condonopsis lanceolata Trautv. was planted in field to investigate the effect of afterwards shading in the condition of sun light of fifty six percent on the characteristics of photosynthesis according to leaf position at flowering stage. The vine length and leaf area were increased with shading treatment in comparison with that of non-shading. Dry weight of leaf and vine indicate opposite tendency with the result above. SLA (specific leaf area) was much more increased in shaded leaves than that obtained from non-shading treatment. The shaded leaves of plant show a higher SPAD value than that of non-shaded leaves. The net photosynthetic rate and stomatal conductance were increased as the PAR was increased. And it is the maximum valve (PAR of 700-1000 ${\mu}$mol/m$^2$/s of PAR) of all leaves. Overnurse and light saturation point of the Condonopsis lanceolata Trautv. shading-treated was improved in comparison with control as net photosynthetic rates of leaves positioned on each part of the stem was increased.

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Effect of Wind Velocity on Photosynthesis, Sap Flux, and Damage of Leaves in Apple Trees (풍속이 사과나무의 광합성 특성과 수액이동 및 엽손상에 미치는 영향)

  • Yim, Ji Hye;Choi, Young Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • This study was carried out to determine the effects of wind speed on physiological responses in 'Fuji' apple (Malus pumila Miller). Two levels of wind blowing (3 and $5m{\cdot}s^{-1}$) were produced by large electric fans. Photosynthetic rate was reduced by one-way wind blowing treatment at $5m{\cdot}s^{-1}$, compared to the mild wind control, and this reduction was more obvious with stronger wind and increasing duration of wind application. The reduction in photosynthesis by the wind treatments was correlated with that in the proportion of opened stomates and stomatal conductance. The one-way wind treatment at $5m{\cdot}s^{-1}$ caused a leaf browning and leaf fall, and this negative effect became more serious with increasing time of exposure to the wind treatments. The sap flux through stem increased in all wind treatments compared to the natural mild wind.

Light Intensity Influences Photosynthesis and Crop Characteristics of Jeffersonia dubia

  • Rhie, Yong Ha;Lee, Seung Youn;Jung, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.584-589
    • /
    • 2014
  • Jeffersonia dubia is a spring-flowering perennial found in rich forests in Korea and Northern China and has potential as an ornamental or medicinal plant. However, illegal picking and land use change have decreased the number of populations and overall population size of this plant in its natural habitat. Although J. dubia has been reported to be a shade-preferring plant, no study has determined the optimum light intensity for its growth. The objectives of this work were to observe the effects of various shading levels on the physiological responses of J. dubia and to determine the proper shading level for cultivation. Treatments consisted of four shading levels (0%, 50%, 75%, and 95% shade) imposed using black mesh cloth. The number of leaves and dry weight increased with decreased shading. The shoot-to-root ratio increased with increased shading, mainly due to decreased root dry weight under shading. Plants showed low net $CO_2$ assimilation rates and $F_v/F_m$ values combined with low dry matter levels when grown under 0% shade (full sunlight). These results indicate that J. dubia plants experience excessive irradiance without shading, resulting in damage to the photosynthetic apparatus. By contrast, the net photosynthesis rate increased as the shading level increased. $F_v/F_m$, the potential efficiency of PSII, was 0.8 under 95% shade, indicating that J. dubia is well-adapted under heavy shading. However, the low dry matter of plants in the 95% shade treatment indicated that the low light intensity under 95% shade led to a decline in plant growth. Thus, moderate light (50% shading) is recommended for cultivating J. dubia without physiological defects.

Comparative Analysis between Healthy and Powdery Mildew-infected Plants of Strawberry Cultivar Seolhyang (딸기 설향품종의 흰가루병 건전 및 감염식물 비교 분석)

  • Nam, Myeong-Hyeon;Jeon, Yi-Nae;Lee, Hee-Chul;Lee, He-Duck;Kang, Hee-Kyoung
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.80-85
    • /
    • 2012
  • We examined the incidence of powdery mildew in strawberry cv. Seolhyang plants, and performed a comparative analysis on the temperature, photosynthesis rate, and nutrient content of healthy and powdery mildew-infected plants. Powdery mildew first infected the fruit of the strawberries in mid-January, and the disease severity increased in both fruits and leaves during the late harvest season. The rate of photosynthesis and leaf temperatures of healthy plants were higher than those of powdery mildew-infected leaves and significantly decreased with an increase in the disease severity. The healthy and powdery mildew-infected plants in the soil analysis were not significantly different in chemical compositions. The leaves of the healthy plants contained lower potassium and higher manganese and chlorophyll concentrations than the powdery mildew-infected plants. In particular, manganese was significantly higher in healthy leaves than in infected leaves. Therefore, the concentrations of potassium, manganese and chlorophyll in strawberry leaves may be an important factor for disease suppression.

Drought Stress Influences Photosynthesis and Water Relations Parameters of Synurus deltoides (건조스트레스가 수리취의 광합성 및 수분관련 특성에 미치는 영향)

  • Lee, Kyeong-Cheol;Lee, Hak Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.288-299
    • /
    • 2017
  • This study was conducted to find out the influence of drought stress on physiological responses of Synurus deltoides. Drought stress was induced by withholding water for 25 days. Leaf water potentials were decreased of both predawn (${\Psi}_{pd}$) and mid-day (${\Psi}_{mid}$) with increasing drought stress, but water saturation dificit (WSD) was 7 times increased. ${\Psi}_{pd}-{\Psi}_{mid}$ showed the significant difference of 0.22~0.18 MPa in stressed before 10 days, and nonsignificant as treatment time became longer. A strong reduction of stomatal conductance ($gH_2O$) and stomatal transpiration rate (E) were observed after 15 days of drought stress Significant reductions of net apparent quantum yield (${\Phi}$) and maximum photosynthesis rate ($Pn_{max}$) were observed after 20 days of drought stress; However, water use efficiency (WUE) was shown the opposite trend. This implies that decrease of photosynthesis rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. From JIP analysis, flux ratios (${\Psi}_O$ and ${\Phi}_{EO}$) and performance index on absorption basis ($PI_{ABS}$) were dramatically decreased withholding water after 15 days, which reflects the relative reduction of photosystem II activity. The leaf of S. deltoides showed osmotic adjustment of -0.35 MPa at full turgor and -0.40 MPa at zero turgor, and also cell-wall elastic adjustment of 9.4 MPa, indicating that S. deltoides tolerate drought stress through osmotic adjustment and cell-wall elastic adjustment. The degree of change in water relations parameters such as Vo/DW, Vt/DW decreased with increasing drought stress. This result showed that S. deltoides was exhibited a strong reduction of photosynthetic activity to approximately -0.93 MPa of predawn leaf water potential, and both of osmotic adjustment and cell-wall elastic adjustment in drought stress condition appears to be an important adaptation for restoration in this species.