• Title/Summary/Keyword: Photosynthesis Rate

Search Result 464, Processing Time 0.03 seconds

Effects of Depth and Duration of Water-logging on Growth and Yield at Transplanting and Flowering Stage in Pepper (Capsicum annuum L.) (고추(Capsicum annuum L.)의 이식기(移植期) 및 개화기(開化期) 침수처리(浸水處理) 따른 생육반응(生育反應))

  • Guh, Ja-Ock;Kuk, Yong-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.425-433
    • /
    • 1996
  • Pepper plants were water-logged at 0, 5, 10 and 15 cm at transplanting and flowering stages under the condition of greenhouse. Treatment of water-logging times were 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. At the transplanting stage, plant height, number of leaves, shoot and root fresh weight decreased by water-logging at 0cm for 24 hours and at 5cm or more for 6 hours. Number of fallen leaf was negligible by 12 hours water-logging at 0cm, however, its increased by more increased the water-logging depth and time. Diffusion resistance and chlorophyll content of leaf, and root activity decreased at more than 24 hours of water-logging regardless of the water-logging depth treatments. Photosynthesis and respiration rate diminished by increased the water-logging depth at 120 hours water-logging treatment. Plant diseases, mainly anthracnose(Colletotrichum) occurred in proportion to increase the depth and time of water-logging. It was not possible to control the diseases by fungicides. At the treatment of foliar spray of urea for recovery to water-logging damage, the efficiency was not found on plant height, but the number of leaves. Number of fruit and weight of fruit per plant showed no difference from no water-logging to 24 hours water-logging at 0cm, but its decreased that more than 24 hours water-logging at 0cm and more than 6 hours water-logging at 5cm or more. The averaged weight of a fruit on survival plants increased by more hours and deeper water-logging. There was positive correlation between all the investigated characteristics of growth and yield. There was, however, negative correlation between the characteristics and diffusion resistance of leaf stomata. The correlation between number of fallen leaf and averaged weight of a fruit was not significant. At flowering stage, number of fruit and weight of fruit per plant showed a similar tendency to no water-logging and by 12 hours water-logging at 0cm and 5cm, but significantly decreased at more than 24 hours water-logging from 0 to 5cm, and more than 6 hours water-logging at 10cm or more. The averaged weight of a fruit on survival plants increased by more hours and deeper water-logging except for 120 hours water-logging at all water depths.

  • PDF

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

Evaluation of Scab Resistance and Effect of Photosynthetic Rates on Fruit Characteristics among Elite Pear Seedlings (배 우량계통의 검은별무늬병 저항성 평가 및 광합성률이 과실 품질에 미치는 영향 구명)

  • Won, Kyung-Ho;Kang, Sam-Seok;Kim, Yoon-Kyeong;Sherzod, Rajametov;Lim, Kyeong-Ho;Lee, Han-Chan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.117-122
    • /
    • 2013
  • BACKGROUND: The scab, which is caused by Venturia nashicola, gives serious damages to pear trees. 'Niitaka' accounts for 82% of areas in pear cultivation. However 'Niitaka' is a scab susceptible cultivar. So, most of Korean farmers who growing pear trees have suffered by economic losses with the scab. In this research, we evaluated the scab resistance among elite pear seedlings to clarify genetics about the scab resistance. And we analyzed photosynthetic features with these seedlings to develop suitable cultivar which is advantageous for producing quality fruits during the growth and development of plants. METHODS AND RESULTS: We measured the rates of scab incidence among seedlings in a field experiment condition and an in-vitro test. An in-vitro test has been done with field experiment-based results. We made plant materials by grafting branches of each seedlings with 'Kongbae' rootstocks. And they had been grown for one month. Then, scab conidia suspension is sprayed to seedlings and sustained for 40 days under the controlled environment. As the results, 6 seedlings displayed lower incidence rates than other seedlings and 'Niitaka'. We also measured instant photosynthetic rates of each seedlings to determine the correlation between photosynthetic rates and fruit characteristics. However, it seemed that there is no correlation between them. CONCLUSION(S): Among the seedlings, 6 seedlings displayed the higher resistance to scab than other seedlings and 'Niitaka'. This characteristics is considered to be come from the gene expression of European pear. And we found that photosynthetic rate in trees rarely does not influence the fruit characteristics. It is considered to be affected by cultivar's own characteristics.

Assessment of Phytoplankton Viability Along the Salinity Gradient in Seomjin River Estuary, Korea (섬진강 하구역에서 염분구배에 따른 식물플랑크톤 활성도 평가)

  • Lim, Youngkyun;Baek, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.513-523
    • /
    • 2017
  • We evaluated the viability of phytoplankton along the salinity gradient in the flood and ebb tides of spring tide of February and the ebb tide of neap tide of March 2017 in the Seomjin River Estuary. Additional laboratory experiments were also conducted to determine the reason of the pH changes along the salinity gradient using the field natural sample in February. In field, saltwater was well mixed at downstream vertically and the salinity gradient was horizontally appeared toward upstream of freshwater zone. There were strong negative correlations between salinity and nutrient (nitrate + nitrite R=0.99, p<0.001, and silicate R=0.98, p<0.001), implying that those two nutrients of freshwater origin were gradually diluted with mixing the saltwater. On the other hands, relatively high phosphate concentration was kept in the stations of saltwater over 15 psu, indicating that it was caused by resuspended sediments of Gwangyang Bay and downstream by tidal water mixing.Among phytoplankton community structure in winter, Eucampia zodiacus have occupied to be c.a. 70 % in the most stations. Based on the field survey results for survivability of phytoplankton by phytoPAM instrument, there was positive correlations between salinity and chlorophyll a (R=0.82, p<0.001) and, salinity and active chlorophyll a (R=0.80, p<0.001), implying that the dominant marine diatom species may have significantly damaged in low salinity conditions of upstream. Also, maximum mortality rate of phytoplankton caused by low salinity shock was appered to be 75% in the upstream station. In particular, the pH in spring tides of February had tended to increase with high phytoplankton accmulated stations, suggesting that it was related with absorption of $CO_2$ by the photosynthesis of dominant diatom. In laboratory experiments, phytoplankton mass-mortality caused by low salinity shock was also occurred, which is confirmed with reducing the photosynthetic electron transport activity. Following the phytoplankton mass-mortality, bacteria abundance was significantly increased in 24 hours. As a result, the mass-proliferating bacteria can produce the $CO_2$ in the process of biodegradation of diatoms, which can lead to pH decrease. Therefore, marine phytoplankton species was greatly damaged in freshwater mixing area, depending on along the salinity gradient that was considered to be an important role in elevating and reducing of pH in Seomjin River Estuary.

Growth and Nutrients Uptake as Affected by Ammonium sulfate and Urea in the Paddy Rice (황산암모니아 및 요소의 시용이 수도의 생육과 양분 흡수에 미치는 영향)

  • ;Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.391-418
    • /
    • 1983
  • Urea and ammonium sulfate without and with sulfur group, respectively, were compared with respect to their nutritive effects on the rice plants, Suweon 264 and Jinheung, under the nursery trial on the protected upland and lowland seedbed, the pot trials with their various combination ratios and with added sodium sulfate to urea and the trials on the paddy fields which have undergone urea and ammonium sulfate application for many years. The rice seedlings fertilized with ammonium sulfate surpassed those with urea in growth performance and nutrients absorption of the rice seedlings at nursery period. Such stimulating effect of ammonium sulfate on the growth and nutrients uptake was more remarkable under the upland nursery than under the lowland one. The pot trial with the various combination ratios of urea and ammonium sulfate revealed that the chlorophyll content in leaf blade increased with the increment of sulfate ratio in the combination and the sole application of urea caused the chlorosis of leaf which was more conspicuous in Suweon 264 than in Jinheung. Fertilized with the same active ingradient amount of nitrogen, the rice plants supplied with ammonium sulfate surpassed those with urea in the chlorophyll content consistently under the nursery, the pot and the paddy field trials. The photosynthesis of flag leaf at heading stage increased with the combination rate of ammonium sulfate in the pot trial. The sulfur applicated as supplementary element of nitrogen in the nursery, the pot and the field trials were observed to be in positive relationship to the nitrogen and potassium content, but to be in negative correlation to the calcium content. The sulfur content in the rice plants was higher at early growth stage and decreased with the advance in growth stage. The nitrogen content also showed a similiar tendency to the sulfur content, and the N/S ratio was higher at early growth stage than at later one. The N/S ratio was negatively correlated with the chlorophyll content. In the field experiment, ammonium sulfate surpassed urea in the number of productive tiller, dry matter production and unhulled rice yields, but much stimulating effect of ammonium sulfate on the grain production was shown to be less effective than that on the straw production. The nitrogen and major nutrients content in the rice straw at harvest were higher in the paddy field with long-term ammonium sulfate application than in that with long-term urea application, suggesting that the former might have greater potentiality in nutrients supply than the latter.

  • PDF

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.

Changes of Plant Growth, Leaf Morphology and Cell Elongation of Spinacia oleracea Grown under Different Light-Emitting Diodes (발광다이오드 광원에 따른 시금치 생육, 엽 형태형성 및 세포길이 변화)

  • Lee, Myungok;Park, Sangmin;Cho, Eunkyung;An, Jinhee;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.222-230
    • /
    • 2018
  • This study aimed to determine effects of light-emitting diodes on plant growth, leaf morphology and cell elongation of two cultivars ('World-star' and 'Sushiro') of Spinacia oleracea. Plants were grown in a NFT system for 25 days after transplanting (DAT) under the LEDs [White (W), Red and Blue (RB, ratio 2:1), Blue (B), Red (R) LED] under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). The 'World-star' variety was significantly higher in shoot fresh and dry weights, leaf number, and leaf area than the 'Sushiro' variety. For the 'World-star' variety, the two treatments of mixed light (RB) and red light (R) showed a 35% higher shoot dry weight than that of blue light (B) and white light (W) at 25 DAT. In the 'Sushiro' variety, mixed light (RB) treatment, which had the highest shoot fresh and dry weights, showed 40% higher than the white light (W) treatment, which had the lowest shoot fresh and dry weights. Both varieties showed leaf epinasty symptom at 21 DAT only in both mixed light (RB) and red light (R), and red light (R) treatment showed significantly higher symptom than mixed light (RB), indicating the leaf epinasty is associated with red light. Microscopic observations of the cell size in the leaf center and edge parts showed that the cell density of leaf edge under the red light (R) was lower than that in leaf center, supporting previous reports that suggest an association of the cell size difference between the leaf center and edge with the leaf epinasty occurrence. Since the blue light (B) plays a role in alleviating the epinasty symptom caused by the red light (R), it seems necessary to identify the appropriate mixing ratio of the two light sources. In addition, the World-star variety seems to be more suitable for the cultivation of plant factory using LED light sources.

Daily Shoot Growth Measurement of Zoysiagrass (Zoysia japonica) to Determine Mowing Interval (한국잔디(Zoysia japonica)의 깎기주기 결정을 위한 지상부 생육 조사)

  • Lee, Hyo-Soon;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Mowing is an important practice in golf course management. Mowing interval and height can affect net photosynthesis of turfgrass and finally shoot density, tillering, rooting and regrowth of turfgrass. The objectives of this study were to investigate the regrowth rate of zoysiagrass shoot under different mowing height for determination of proper mowing frequency. Recommended mowing interval were calculated by a rule that no more than 33% of the above ground height be removed in a single mowing. Daily shoot growth of zoysiagrass at 10 mm mowing height were 2.1~4.7 mm (July), 1.9~2.9 mm (August), 0.9~1.5 mm (September), and 0.6 mm (October). These results indicate that recommended mowing interval were 1.1~2.3 day for July, 1.7~2.4 day for August, 3.5~5.4 day for September, and 8.5 day for October, respectively. Daily shoot growth of zoysiagrass at 15 to 17 mm mowing height were 4.0~5.3 mm (July), 2.9~4.5 mm (August), 1.4~3.7 mm (September), and 1.3 mm (October). These results indicate that recommended mowing interval were 1.4~1.9 day for July, 1.7~2.5 day for August, 2.3~6.3 day for September, and 6.8 day for October, respectively. Daily shoot growth of zoysiagrass at 18 to 21 mm mowing height were 3.5~4.7 mm (July), 2.9~4.9 mm (August), and 1.5~1.8 mm (September). These results indicate that recommended mowing interval were 1.9~2.6 day for July, 1.8~3.1 day for August, and 5.9~7.0 day for September, respectively. Daily shoot growth of zoysiagrass at 50 mm mowing height were 4.6~4.9 mm (July), 5.0~6.5 mm (August), and 2.5~4.7 mm (September). These results indicate that recommended mowing interval were 5.1~5.4 day for July, 3.9~5.0 day for August, and 5.3~9.8 day for September, respectively.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Screening of cryoprotectants (CPAs) for cryopreservation in the Nitzschia sp. of marine microalgae (해양 규조류 Nitzschia sp.의 초저온동결보존을 위한 보존제의 영향 분석)

  • Lee, In Hye;Jeon, Ji Young;Kim, Kyeung Mi;Kang, Myung suk
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.400-408
    • /
    • 2018
  • Biodiversity has continued to degrade in the $21^{st}$ century due to global warming occasioned by destruction of the environment around the world.. The Nagoya protocol places Korea in a unique position to effectively develop and protect its domestic genetic resources. Microalgae under study in this research contains large amount of antioxidant substances such as beta carotene and astaxanthin, that can be used as biological resource owing to the large amounts of biomass that can be secured through photosynthesis. However, it is difficult to preserve it since cryopreservation method used for long-term preservation is yet to be developed. A basic study for long term cryopreservation was carried out on Nizschia frustulum and Nitzschia amabilis which belong to marine diatoms. As cryoprotectants (CPAs), glycerol, DMSO, and methanol which penetrate into cells were prepared at 5%, 10%, and 15% concentrations each, in case of methanol, it was tested at concentrations of 5%, 10% and 12% by its nature. Two kinds of microalgae, N. frustulum and N. amabilis, were diluted with $10^2$, $10^3$ and $10^4cells\;ml^{-1}$, respectively. The highest survival rate was shown at12% concentration of methanol, and the figures were $6.94{\pm}0.31%$ in N. frustulum and $8.85{\pm}0.16%$ in N. amabilis. As a result of 3 weeks cultivation of thawed microalgae after freezing, the result is shows that N. frustulum increased about 10 times faster and N. amabilis increased about 12 times the original concentration.