• Title/Summary/Keyword: Photosynthesis Capacity

Search Result 89, Processing Time 0.023 seconds

Effects of Benzo〔a〕pyrene on Growth and Photosynthesis of Phytoplankton (식물플랑크톤의 성장과 광합성에 대한 benzo〔a〕pyrene의 영향)

  • Kim, Sun-Ju;Shin, Kyung-Soon;Moon, Chang-Ho;Park, Dong-Won;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.54-62
    • /
    • 2004
  • We examined the impacts of anthyopogenic pollutant (benzo〔a〕pyrene) on the growth and photosynthesis of five marine phytoplankton species (Skeletonema costatum, Heterosigma akashiwo, Prorocentrum dentatum, P. minimum, Aknshiwo sanguinea), which are dominant in Korean coastal water. After the 72 h exposure to benzo〔a〕pyrene, the dramatic decrease in cell numbers was observed in the range of 1 to 10 $\mu\textrm{g}$ L$^{-1}$ for S. costatum, P. minimum, P. dentatum, whereas for A. sanguinea and H. akashiwo at the low concentrations 0.1 to 1 $\mu\textrm{g}$ L$^{-1}$ . Among the 5 phytoplankton species, the highest growth inhibition concentration ($IC_{50}$/) was 6.20 $\mu\textrm{g}$ L$^{-1}$ for P. minimum, followed by 2.14 $\mu\textrm{g}$ L$^{-1}$ for P. dentatum, 1.68 $\mu\textrm{g}$ L$^{-1}$ for S. costatum, 0.74 $\mu\textrm{g}$ L$^{-1}$ for H. akashiwo, 0.10 $\mu\textrm{g}$ L$^{-1}$ for A. sanguinea. The five species exposed to the low concentration of 1 $\mu\textrm{g}$ L$^{-1}$ were recovered after transferring to new media, but the species exposed to the high concentrations of 10 and 100 $\mu\textrm{g}$ L$^{-1}$ were not recovered, with the exception of P. minimum. Those results indicate that the thecate dinoflagellate P. minimum is most tolerant to the chemical and the athecate dinoflagellate A. sanguinea is not. Geneyally, the cell-specific photosynthetic capacity of H. akashiwo exposed to the low concentrations of 0.1 and 1 $\mu\textrm{g}$ L$^{-1}$ was higher than that of the cells in the control, whereas the cells exposed to the high concentrations of 5 and 10 $\mu\textrm{g}$ L$^{-1}$ showed the negligible photosynthetic level by the first few days of the experiment. In the case of the cells exposed to the concentration of 5 $\mu\textrm{g}$ L$^{-1}$ , after 12 days of the experiment the photosynthetic capacity was increased toward the end of the experiment. This indicates that H. akashiwo may utilize the benzo〔a〕pyrene as a carton source for its growth when exposed to low concentrations. Results suggest that anthropogenic pollutants such as benzo〔a〕pyrene may have significant influence on the succession of phytoplankton species composition and the primary production in coastal marine environments.

Budget and distribution of organic carbon in Quercus serrata Thunb. ex Murray forest in Mt. Worak

  • Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.425-436
    • /
    • 2015
  • The carbon cycle came into the spotlight due to the climate change and forests are well-known for their capacity to store carbon amongst other terrestrial ecosystems. The annual organic carbon of litter production, forest floor litter layer, soil, aboveground and belowground part of plant, standing biomass, net primary production, uptake of organic carbon, soil respiration, etc. were measured in Mt. Worak in order to understand the production and carbon budget of Quercus serrata forest that are widely spread in the central and southern part of the Korean Peninsula. The total amount of organic carbon of Q. serrata forest during the study period (2010-2013) was 130.745 ton C ha-1. The aboveground part of plant, belowground part of plant, forest floor litter layer, and organic carbon in soil was 50.041, 12.510, 4.075, and 64.119 ton C ha-1, respectively. The total average of carbon fixation in plants from photosynthesis was 4.935 ton C ha-1 yr-1 and organic carbon released from soil respiration to microbial respiration was 3.972 ton C ha-1 yr-1. As a result, the net ecosystem production of Q. serrata forest estimated from carbon fixation and soil respiration was 0.963 ton C ha-1 yr-1. Therefore, it seems that Q. serrata forest can act as a sink that absorbs carbon from the atmosphere. The carbon uptake of Q. serrata forest was highest in stem of the plant and the research site had young forest which had many trees with small diameter at breast height (DBH). Consequentially, it seems that active matter production and vigorous carbon dioxide assimilation occurred in Q. serrata forest and these results have proven to be effective for Q. serrata forest to play a role as carbon storage and NEP.

Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone

  • Garbary, David J.;Miller, Anthony G.;Scrosati, Ricardo A.
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.321-331
    • /
    • 2014
  • Vertebrata lanosa is an abundant and obligate red algal epiphyte of Ascophyllum nodosum that forms part of a complex and highly integrated symbiotic system that includes the ascomycete, Mycophycias ascophylli. As part of ongoing studies to resolve interactions among species in the symbiosis, we used pulse amplitude modulation fluorimetry of chlorophyll a fluorescence, from photosystem II (PSII), to measure the maximum quantum yield ($F_v/F_m$) of PSII [$QY(II)_{max}$] and relative photosynthetic electron transport rates (rETR), as a function of light intensity, in order to evaluate the photosynthetic capacity of the two algal symbionts in the field and in the laboratory under different treatments. Our primary question was 'Is the ecological integration of these species reflected in a corresponding physiological integration involving photosynthetic process?' In the laboratory we measured changes in $QY(II)_{max}$ in thalli of V. lanosa and A. nodosum over one week periods when maintained together in either attached or detached treatments or when maintained separated from each other. While the $QY(II)_{max}$ of PSII of A. nodosum remained high and showed no significant variation among treatments, V. lanosa showed decreasing performance in the following conditions: V. lanosa attached to A. nodosum, V. lanosa in the same culture, but not attached to A. nodosum, and V. lanosa alone. These results are consistent with observations in which rETR was reduced in V. lanosa maintained alone versus attached to A. nodosum. Values for $QY(II)_{max}$ in V. lanosa measured in the field in fully submerged thalli were similar to those measured in the laboratory when V. lanosa was attached to it obligate host A. nodosum. Our results provide evidence of a physiological association of the epiphyte and its host that reflects the known ecology.

Growth and Physiological Responses of Two Pine Species Grown under Polluted Ansan Industrial Region (안산 공단지역에 식재된 소나무류 2종의 생장과 생리학적 반응)

  • Jin, Hyun-O;Choi, Dong-Su;Lee, Choong-Hwa;Jeong, Yong-Ho;Koike, Takayoshi
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.321-326
    • /
    • 2005
  • We investigated the effects of pollutants on two pine species (Pinus koraiensis and Pinus rigida) in an industrial region, using a physiological approach. We measured the growth and physiological parameters (photosynthetic activity and chemical contents) of the pine trees in relation to environmental pollutants. The concentrations of manganese (Mn), fluorine (F) and chlorine (CI) in needles of two pine species at the damaged site were significantly higher than those at the control site, and concentrations of essential elements (P) and chlorophyll in needles at the damaged site were significantly lower than at the control site. The light-saturated net photosynthesis $(P_{sat})$, apparent quantum yield $(\Phi)$, carboxylation efficiency (CE) of both pines at the damaged site were significantly lower than those at the control site. The length of shoots and survivorship of needles of two pines at the damaged site were significantly lower than those at the control site. Especially, at damaged site, growth of shoots and needle longevity of P. koraiensis are larger than those of P. rigida.

Electron Transport Activities of Chloroplasts Isolated from the Detached Rice Leaves Stored under Low Temperature with Illumination (광 및 저온처리한 벼잎 절편에서 분이한 엽록체의 전자전달 활성)

  • 문병용
    • Journal of Plant Biology
    • /
    • v.31 no.4
    • /
    • pp.299-307
    • /
    • 1988
  • The electron transport activities of choloroplasts isolated from hte detached rise (Oryza sativa L. cv. Chucheong) leave stored under low temperature(4$^{\circ}C$) with light illumination were investigated to understand the role of light in the low temperature inhibition of photosynthesis in the chilling-sensitive plants. Chlorophyll content of the detached leaves upon incubation at 28$^{\circ}C$ and 4$^{\circ}C$ in the dark was also measured. The rice seedlings were grown with Hoagland medium in the growth chamber of 28$^{\circ}C$ temperature and 400 ft.c fluorescent light with the photoperiod of 16 h. Although chlorophyll content of the detached leaves stored in the dark declined by 61.7% after 28$^{\circ}C$ treatement, there occurred only 5.2% decrease of chlorophyll with 4$^{\circ}C$ treatment. Low temperature treatment(4$^{\circ}C$) for 6 days brought about decreases in total photosystem(PS II+PS I) activities by 35.2% and 73.6% in te presence and absence of light, respectively, while after 28$^{\circ}C$ treatment of the detached leaves for 6 days in the dark there was only 27.6% decrease in PS II+PS I activity. PS II activities were also decreased by 35.6% and 72.2% in the light and dark, respectively. PS I activities were decreased slightly, however, by 7.6% and 16.2% in the light and dark, respectively. Investigations into DPClongrightarrowDCPIP and NH2OHlongrightarrowDCPIP activities revealed that low temperature inhibition of PS II activities was not due to the inactivation of the water oxidation capacity at low temperature. It was concluded that light protects the electron transport activities of isolated rice chloroplasts from the inhibitory effect of low temperature in the detached leaves.

  • PDF

Photosynthetic Characteristics of Sedum takevimense on Various Moisture Conditions in a Green Roof System (옥상녹화시스템에서 수분 조건에 따른 섬기린초의 광합성 특성)

  • Li, Hong;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.140-146
    • /
    • 2013
  • This experiment was conducted in order to study the physiological characteristics of Sedum takevimense in different moisture conditions. The photosynthetic rate, water use efficiency and the respiratory rate were determined by using a photable photosynthesis system. According to the results, the best illumination range and moisture range were explicitly selected. The highest photosynthetic rate was at $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and after this value, the trend showed a reduction. When the moisture was 11.31%, the photosynthetic capacity and water use efficiency reached maximum value, but the respiratory rate reached maximum value at 7.91%. According to the measured values, the best illumination range was $600{\sim}1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and the best moisture range was 7.09~11.31%.

Effects of Drought Stress on Photosynthetic Capacity and Photosystem II Activity in Oplopanax elatus (수분스트레스가 땃두릅나무의 광합성 능력 및 광계 II의 활성에 미치는 영향)

  • Lee, Kyeong Cheol;Kim, Sun Hee;Park, Wan Geun;Kim, Young Seol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This study was performed to investigate the physiological responses of Oplopanax elatus by water condition. Drought stress was induced by withholding water for 26 days. The results show that $P_{N\;max}$, SPAD, gs, E and Ci were significantly decreased with decreasing of soil moisture contents. However, AQY and WUE were decreased slightly only at 26 day. This implies that photosynthetic rate is reduced due to an inability to regulate water and $CO_2$ exchange through the stomatal. According to JIP analysis, ${\Phi}_{PO}$, ${\Psi}_O$, ${\Phi}_{EO}$ and $PI_{ABS}$ were dramatically decreased at 21 day and 26 day, which reflects the relative reduction state of the photosystem II. On the other hand, the relative activities per reaction center such as ABS/RC, TRo/RC were significantly increased at 26 day. Particularly, Dio/RC and DIo/CS increased substantially under drought stress, indicating that excessive energy was consumed by heat dissipation. These results of chlorophyll a fluorescence show that the sensitivity changes photosystem II activity. Thus, according to the results, O. elatus was exhibited a strong reduction of photosynthetic activity to approximately 10% soil moisture contents, and JIP parameters could be useful indicator to monitor the physiological states of O. elatus under drought stress.

Condition of Storage and Growth Characteristics on Bulb Propagation of Nerine by Tissue Culture (네리네 대량증식을 위한 자구 저장 및 순화재배)

  • Han Soo-Gon;Kang Chan-Ho;Lim Hoi-Chun;Ko Bok-Rai;Choi Joung-Sik;Lee Wang-Hyu;Choi In-Young
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.50-53
    • /
    • 2006
  • Nerine was originated from South Africa and around 30 kinds of species are distributed in worldwide. In present study we have characterized the condition of storage and growing conditions on the bulb propagation of Nerine by the tissue culture. Result indicated that the percentage of decrement, decay and sprouting of bulblets in the tissue culture was high at the higher temperature compare to lower temperature. The optimum conditions for storage and time were 12 weeks at $15^{\circ}C$ which were having 86.4% sprouting rate. The sprouting rate at different temperature and acclimation time, using bulblets in the tissue culture, were optimum at early June when temperature is relatively higher($22^{\circ}C$) that facilitate to breaking the dormancy. Growth characteristics and capacity of photosynthesis of Nerine were better at red and blue mixed lightness.

Effects of organic/inorganic carbon source on the biological luxury-uptake of phosphorus by cyanobacteria Synechococcus sp. (남조류 Synechococcus sp.의 혐기-호기법에 의한 인 과잉섭취 효율에 미치는 유기/무기 탄소원의 영향)

  • Yu, Mi-Yeong;Kim, Yun-Ji;Choi, Yun-Jeong;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.437-443
    • /
    • 2020
  • Biological phosphorus removal is accomplished by exposing PAO(phosphorus accumulating organisms) to anaerobic-aerobic conversion conditions. In the anaerobic condition, PAO synthesize PHB(polyhydroxybutyrate) and simultaneously hydrolysis of poly-p resulting phosphorus(Pi) release. In aerobic condition, PAO uptake phosphorus(Pi) more than they have released. In this study, cyanobacteria Synechococcus sp., which is known to be able to synthesize PHB like PAO, was exposed to anaerobic-aerobic conversion. If Synechococcus sp. can remove excess phosphorus by the same mechanism as PAO, synergistic effects can occur through photosynthesis. Moreover, Synechococcus sp. is known to be capable of synthesizing PHB using inorganic carbon as well as organic carbon, so even if the available capacity of organic carbon decreases, it was expected to show stable phosphorus removal efficiency. In 6 hours of anaerobic condition, phosphorus release occurred in both inorganic and organic carbon conditions but SPRR(specific phosphorus release rate) of both conditions was 10 mg-P/g-MLSS/day, which was significantly lower than that of PAO. When converting to aerobic conditions, SPUR(specific phosphorus uptake rate) was about 9 mg-P/g-MLSS/day in both conditions, showing a higher uptake rate than the control condition showing SPUR of 6.4 mg-P/g-MLSS/day. But there was no difference in terms of the total amount of removal. According to this study, at least, it seems to be inappropriate to apply Synechococcus sp. to luxury uptake process for phosphorus removal.

Carbon balance and net ecosystem production in Quercus glauca forest, Jeju Island in South Korea

  • Jeong, Heon Mo;You, Young Han;Hong, Seungbum
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.250-258
    • /
    • 2022
  • Background: To assess the carbon sequestration capacity and net ecosystem productivity (NEP) of Quercus glauca forests, we analyzed the net primary productivity (NPP), carbon storage, and carbon emission of soil in a Q. glauca forest on Jeju Island (South Korea) from 2016 to 2018. Results: The average carbon stock in the above- and below-ground plant biomass was 223.7 Mg C ha-1, while the average amount of organic carbon fixed by photosynthesis was 9.8 Mg C ha-1 yr-1, and the average NPP was 9.6 Mg C ha-1 yr-1. Stems and branches contributed to the majority of the above- and below-ground standing biomass and NPP. The average heterotrophic carbon emission from the soil was 8.7 Mg C ha-1 yr-1, while the average NEP was 1.1 Mg C ha-1 yr-1. Although the carbon stock, carbon absorption, and soil respiration values were higher than those reported in other oak forests in the world, the NEP was similar or lower. Conclusions: These results indicator that Q. glauca forests perform the role of a large carbon sink through the CO2 absorption in the plants in terms of carbon balance. And it is judged to be helpful as data for assessment of carbon storage and flux in the forests and mitigation of elevated CO2 in the atmosphere.