• 제목/요약/키워드: Photopolymer Resin

검색결과 25건 처리시간 0.022초

Fabrication and Characterization of PZT Suspensions for Stereolithography based on 3D Printing

  • Cha, JaeMin;Lee, Jeong Woo;Bae, Byeonghoon;Lee, Seong-Eui;Yoon, Chang-Bun
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.360-364
    • /
    • 2019
  • PZT suspensions for photo-curable 3D printing were fabricated and their characteristics were evaluated. After mixing the PZT, photopolymer, photo-initiator, and dispersant for 10 min by using a high-shear mixer, the viscosity characteristics were investigated based on the powder content. To determine an appropriate dispersant content, the dispersant was mixed at 1, 3, and 5 wt% of the powder and a precipitation test was conducted for two hours. Consequently, it was confirmed that the dispersibility was excellent at 3 wt%. Through thermogravimetric analysis, it was confirmed that weight reduction occurred in the photopolymer between 120? and 500?, thereby providing a debinding heat treatment profile. The fabricated suspensions were cured using UV light, and the polymer was removed through debinding. Subsequently, the density and surface characteristics were analyzed by using the Archimedes method and field-emission scanning electron microscopy. Consequently, compared with the theoretical density, an excellent characteristic of 97% was shown at a powder content of 87 wt%. Through X-ray diffraction analysis, it was confirmed that the crystallizability improved as the solid content increased. At the mixing ratio of 87 wt% powder and 13 wt% photo-curable resin, the viscosity was 3,100 cps, confirming an appropriate viscosity characteristic as a stereolithography suspension for 3D printing.

금속 분말을 이용한 마이크로 광 조형 기술의 개발 (Development of Micro-stereolithography Technology using Metal Powder)

  • 이진우;이인환;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

Impact of UV curing process on mechanical properties and dimensional accuracies of digital light processing 3D printed objects

  • Lee, Younghun;Lee, Sungho;Zhao, Xing Guan;Lee, Dongoh;Kim, Taemin;Jung, Hoeryong;Kim, Namsu
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.161-166
    • /
    • 2018
  • In the last decade, there has been an exponential increase of scientific interest in smart additive manufacturing (AM) technology. Among the different AM techniques, one of the most commonly applied processes is digital light processing (DLP). DLP uses a digital projector screen to flash an ultraviolet light which cures photopolymer resins. The resin is cured to form a solid to produce parts with precise high dimensional accuracy. During the curing process, there are several process parameters that need to be optimized. Among these, the exposure time affects the quality of the 3D printed specimen such as mechanical strength and dimensional accuracy. This study examines optimal exposure times and their impact on printed part. It was found that there is optimal exposure time for printed part to have appropriate mechanical strength and accurate dimensions. The gel fraction and TGA test results confirmed that the improvement of mechanical properties with the increasing UV exposure time was due to the increase of crosslinked network formation with UV exposure time in acrylic resins. In addition, gel fraction and thermogravimetric analysis were employed to microscopically investigate how this process parameter impacts mechanical performance.

소비자 지향 3차원 헬멧제품 제작을 위한 UV레이저 기반의 폴리머/금속적층에 대한 기초연구 (A Fundamental Study on Polymer/Metal Additive Method using a UV Laser for Consumer-oriented 3D Helmet Products)

  • 강보석;안동규;신보성;신종국
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.89-94
    • /
    • 2016
  • Consumer orientation requires that companies understand consumer needs and produce products that meet their expectations. This study proposes a new additive method that creates a polymer/metal bonding layer and thus can lighten the weight of helmets to develop a consumer-oriented 3D printing helmet. The composite solution is experimentally prepared with copper formate and a photopolymer resin. Stereolithography apparatus and photothermal reactions are introduced to fabricate an adhesive hybrid layer of copper metal and polymer. A UV pulse laser with a 355 nm wavelength was installed to simplify this process. Resistance, adhesion, and accuracy were investigated to evaluate the properties of the layer produced.

의안 제작을 위한 광경화 방식 3D 프린터에 적용 가능한 소재 선정 및 장비 최적화를 위한 실험적 연구 (Optimization Research of 3D Printer Associated with Properties of Photocurable Resins for Ocular Prosthesis Producing)

  • 김소현;윤진숙;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권2호
    • /
    • pp.55-61
    • /
    • 2019
  • Recently, various researches on materials and equipment have been actively conducted to overcome the limitations of conventional output methods due to the increase of diversity of 3D printing materials and to adopt an output method suitable for the characteristics of each material. As the range applicable to outputable materials is expanded, manufacturing of medical devices applied to patients is in a more rapid growth trend than other fields. In this study, we investigated the suitable materials for fabricating 3D printer using photocurable resin. As a result, one suitable material was selected through biological safety experiment and thermal stability experiment. Next, to optimize the output of the selected materials, we have developed a system that optimizes the equipment according to the characteristics of the material. The results of this study enabled the implementation of personalized medical implants that could not be made from 3D printer dependent materials, thereby overcoming the limitations of existing 3D printer output conditions and dedicated materials.