• Title/Summary/Keyword: Photonic Crystal Structure

Search Result 90, Processing Time 0.363 seconds

A Study on the Dip-pen Nanolithography Process and Fabrication of Optical Waveguide for the Application of Biosensor

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • Photonic crystal structures have been received considerable attention due to their high optical sensitivity. One of the techniques to construct their structure is the dip-pen lithography (DPN) process, which requires a nano-scale resolution and high reliability. In this paper, we propose a two dimensional photonic crystal array to improve the sensitivity of optical biosensor and DPN process to realize it. As a result of DPN patterning test, we have observed that the diffusion coefficient of the mercaptohexadecanoic acid (MHA) molecule ink in octanol is much larger than that in acetonitrile. In addition, we have designed and fabricated optical waveguides based on the mach-zehnder interferometer (MZI) for application to biosensors. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The MZI optical waveguides were measured of the optical characteristics for the application of biosensor.

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Small group velocity in two dimensional photonic crystal line defect (2 차원 광결정 선결함의 낮은 군속도)

  • Lee, Myotmg-Rae;Hong, Chin-Soo;Kim, Kyoung-Rae;Shin, Won-Chin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.49-51
    • /
    • 2009
  • Photonic crystal is a dielectric materials or a set of different dielectric materials with periodic structure of refractive index. Line defect obtained by leaving out a row of rod along the $\Gamma$-X direction. We showed the change of group velocity in waveguide mode and found a small group velocity. Characteristic of the small group velocity described by electric field distribution. As the phase variation, small group velocity confirmed from positive to negative.

  • PDF

Study of Photonic Crystal Waveguide in Microwave Regime Using 3D FDTD Simulation (3차원 FDTD모사를 이용한 마이크로웨이브 영역에서의 광결정 도파로에 관한 연구)

  • Han, Seung-Ho;Park, Q-Han;Roh, Young-Geun;Heonsu leon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.184-185
    • /
    • 2003
  • Unlike the conventional waveguide such as optical fiber using total internal reflection, photonic crystal waveguide(PCW), a waveguide made of a line defect in a photonic crystal(PC) structure, does not admit an analytic approach due to its complexity but requires a direct numerical approach. Here, we present numerical results of computer simulation for PCW by using the three-dimensional(3D) Finite-Difference Time -Domain(FDTD) algorithm. (omitted)

  • PDF

Tunable Slow Light with Large Bandwidth and Low-dispersion in Photonic Crystal Waveguide Infiltrated with Magnetic Fluids

  • Lei, Weizheng;Pu, Shengli
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.110-113
    • /
    • 2015
  • Two kinds of magnetic fluids with different volume fractions are symmetrically filled into the W0.9 photonic crystal waveguide structure. The 2D plane-wave expansion method is used to investigate the slow light properties numerically. The constant group index criterion is employed to evaluate the slow light performance. The wavelength bandwidth ${\Delta}{\lambda}$ centering at ${\lambda}_0=1550nm$ varies from 32.4 to 44.2 nm when the magnetic field factor ${\alpha}_{\parallel}$ changes from 0 to 1. And the corresponding normalized delay bandwidth product can be tuned from 0.221 to 0.258. For comparison and optimization, two infiltration cases are investigated and the more advantageous infiltration scheme is found.

Huge Enhancement of Magneto-optical Kerr Effect of One-dimensional Photonic Crystals with a Ferromagnetic Defect Layer

  • Mitsuteru Inoue;Arai, Ken-Ichi;Toshitaka Fujii;Masanori Abe
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.408-411
    • /
    • 2000
  • Although the rotation angle and its spectrum of the magneto-optical Kerr effect are physical quantities determined inherently by the material itself, we found that they can widely be designed by utilizing a one-dimensional photonic crystal with a ferromagnetic defect layer. By suitable choice of the film structure, the rotation angle at a designated narrow wavelength is resonantly enhanced up to as several hundred times larger as ordinary rotation angle of the magnetic. This is originated by the localization of light at the magnetic layer inside the film.

  • PDF

Small Group Velocity of Line Defect in Two-dimensional Photonic Crystal (2차원 광결정 선결함의 낮은 군속도)

  • Lee, Myoung-Rae;Kim, Gyeong-Rae;Shin, Won-Jin;Kim, Chang-Kyo;Hong, Chin-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.128-132
    • /
    • 2010
  • Photonic crystal is dielectric materials or a set of different dielectric materials with periodic structure. Line defect is obtained by leaving out a row of rods along the $\Gamma$-X direction. We showed the change of group velocity in waveguide mode and found resultant small group velocity. Characteristics of the small group velocity were described by electric field distribution. Investigating the phase shift, it is confirmed if small group velocity is positive or negative.

Lasing Characteristics of Dye-Doped Cholesteric Liquid Crystal

  • Porov, Preeti;Chandel, Vishal Singh;Manohar, Rajiv
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.117-123
    • /
    • 2015
  • Cholesteric liquid crystals are one dimensional photonic band-gap materials due to their birefringence and periodic structure. Dye doped cholesteric liquid crystals are self-assembling, mirror-less, low threshold laser structures that exhibit distributed feedback. In this review paper, we have presented the development in the field of lasing characteristics of dye doped cholesteric liquid crystals.

Properties of zero group velocity in 2-Dimensional photonic crystal (2 차원 광결정의 군속도의 특징)

  • Kim, Kyoung-Rae;Hong, Chin-Soo;Lee, Myoung-Rae;Shin, Won-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.52-54
    • /
    • 2009
  • A plane wave expansion method(PWEM) was applied for photonic band structure calculation. We examined zero group velocity modes in photonic crystals. The zero group velocity was obtained in second band along G-K direction. We expanded Brillouin zone, and investigated on zero group velocity.

  • PDF

New Phosphor and Material Structures for Displays

  • Summers, Christopher J.;King, Jeffrey;Park, Woun-Jhang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.243-252
    • /
    • 2002
  • We propose a new concept: that of photonic crystal phosphors (PCPs) for display and phosphor related applications. It is well known that microcavities with dimensions comparable to the emitting wavelength strongly enhance light-matter interactions, resulting in a significant increase in spontaneous emission rate, which can be directly translated into enhancement in phosphor efficiency. In recent simulations we have demonstrated that when a microcavity is formed in a nano-phosphor structure, the luminescence band is modified, and can be made spectrally sharp and tunable by engineering the geometry/material properties of the cavity and the surrounding photonic crystal lattice. New phosphor material structures based on photonic crystals are proposed. Applications to thin film EL phosphors and particle phosphors are discussed. Additionally, economic methods of synthesizing and incorporating PCPs into current display applications are proposed.

  • PDF