Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.2.128

Small Group Velocity of Line Defect in Two-dimensional Photonic Crystal  

Lee, Myoung-Rae (순천향대학교 전자물리학과)
Kim, Gyeong-Rae (순천향대학교 전자물리학과)
Shin, Won-Jin (순천향대학교 전자물리학과)
Kim, Chang-Kyo (순천향대학교 전자정보공학과)
Hong, Chin-Soo (순천향대학교 전자물리학과)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.2, 2010 , pp. 128-132 More about this Journal
Abstract
Photonic crystal is dielectric materials or a set of different dielectric materials with periodic structure. Line defect is obtained by leaving out a row of rods along the $\Gamma$-X direction. We showed the change of group velocity in waveguide mode and found resultant small group velocity. Characteristics of the small group velocity were described by electric field distribution. Investigating the phase shift, it is confirmed if small group velocity is positive or negative.
Keywords
Photonic crystal; Line defect; Waveguide mode; Group velocity; Supercell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Yablonovitch, “Photonic crystals", Journal of Modern Optics, Vol. 41, No. 2, p. 173, 1994.   DOI
2 Samuel S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems", Phys. Rev. B, Vol. 59, p. 4091, 1999-II.   DOI
3 K. Sakoda, "Optical Properties of Photonic Crystals", Springer-Verlag, Berlin, p. 32, 2001.
4 Risto M. Nieminen, "Supercell Methods for Defect Calculations", Springer Berlin, Heidelberg, p. 22, 2006.
5 S. H. G. Teo, A. Q. Lui, and J. Singh, "Rod type photonic crystal optical line defect waveguides with optical modulations", Appl. Phys. A, Vol. 89, p. 417, 2007.   DOI
6 J. Semmel, L. Nahle, S. Hofling, and A. Forchel, "Edge emitting quantum cascade microlasers on InP with deeply one-dimensional photonic crystals", Appl. Phys. Lett., Vol. 91, p. 071104, 2007.   DOI
7 John D. Joannopoulos, "Photonic Crystals", Prinston Press, 1995.
8 E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Phys. Rev. Lett., Vol. 58, No. 20, p. 2059, 1987.   DOI
9 C. O. Cho, Y. G. Roh, Y. S. Park, H. S. Jeon, B. S. Lee, H. W. Kim, and Y. H. Choe, "Photonic crystal slab waveguides fabricated by the combination of holography and photolithography", Jap. J. App. Phys., Vol. 43, No. 4A, p. 1384, 2004.   DOI
10 H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 ${\mu}m$", Appl. Phys. Lett., Vol. 81, No. 24, p. 4502, 2002.   DOI
11 F. Wua, T. Wu, Z. Liu, and Y. Liu, “Effect of point defect geometry on localized defect modes in two-dimensional photonic crystals”, Phys. Lett. A, Vol. 349, p. 285, 2006.   DOI
12 C. S. Kee, J. E. Lee, H. Y. Park, and K. J. Chang, "Defect modes in a two-dimensional square lattice of rods", Phys. Rev. B, Vol. 58, No. 6, p. 7908, 1998.   DOI   ScienceOn
13 L. Shen and S. He, "Analysis for the convergence problem of the plane-wave expansion method for photonic crystals", J. Opt. Soc. Am. A, Vol. 19, Issue 5, p. 1021, 2002.   DOI
14 J. C. Knight, J. Broeng, T. A. Birks, P. St. and J. Russell, "Photonic band gap guidance in optical fibers", Science, Vol. 282, p. 1476, 1998.   DOI
15 H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, "Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 ${\mu}m$", Appl. Phys. Lett., Vol. 81, No. 24, p. 4502, 2002.   DOI