• Title/Summary/Keyword: Photonic Crystal

Search Result 324, Processing Time 0.024 seconds

Polarization-resolved radiation pattern s of 2-D photonic band gap lasers (2차원 광 밴드 갭 레이저의 편광 분석된 발광특성)

  • 신동재;황정기;류한열;송대성;한일영;박흥규;장동훈;이용희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.24-25
    • /
    • 2001
  • 광 밴드 갭(photonic band gap)을 가지는 광 결정(photonic crystal)을 이용하여 만들어진 미세 공진기(micro-resonator)를 통해 상온 연속 동작하는 레이저가 최근 개발되었다. 이 미세 공진기는 이득매질(gain medium)이 성장된 반도체의 기판방향과 기판에 수직한 방향을 각각 이차원 광 결정과 판 도파로(slab waveguide) 구조의 전반사를 이용하여 제한하는 구조이다 이러한 광 밴드 갭 공진기의 공진 모드는 그 동안 계산적인 방법을 통해 이론적으로 연구되어 왔으며, 직접 모드의 특성을 측정하는 실험의 필요성이 크게 대두되고 있다. 본 연구에서는 광 밴드 갭에 의해 형성된 2차원 미세 공진기내에서 레이저 발진된 모드의 특성을 먼장 영역(far-field regime)에서 측정 분석한 결과를 보고한다. (중략)

  • PDF

Synthesis of Monodisperse Spherical SiO2 and Self-Assembly for Photonic Crystals

  • Lee, Byung-Kee;Jung, Young-Hwa;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.472-477
    • /
    • 2009
  • Monodisperse spherical $SiO_2$ particles of various sizes ($\sim$350 nm and $\sim$800 nm) and size distributions were synthesized from TEOS and MTMS. The particle size and size distribution were controlled by changing the volume ratio of water to ethanol and the reaction temperature. Narrow-sized $SiO_2$ particles with $\sim$3% size distribution were obtained. Self-assembly of the $SiO_2$ particles for photonic crystals were performed by the solvent evaporation method. The number of ordered $SiO_2$ layers can be controlled by changing the amount of the dispersed $SiO_2$ volume fraction in the solvent.

Wavelength Switching with Temperature in Liquid-Crystal-infiltrated Phtonic Crystal Fibers (액정을 주입한 광자결절광섬유의 온도변화에 따른 파장 스위칭)

  • Jeon, Min-Yong;Kim, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.100-104
    • /
    • 2007
  • We have measured the optical spectra while varying the temperature of photonic crystal fibers (PCFs) with periodic air holes in the cladding. These are liquid crystal infiltrated fibers. For the liquid crystal infiltrated PCFs, we obtained the transmission of several wavelengths at specific temperatures. The transmission power could be reduced by about $10\sim15dB$ by varying the applied temperature in the liquid crystal PCF. We expect that it is applicable as a wavelength switching device in the specific wavelength band.

Optical holographic interconnection method for free-space-division-multiplexed photonic switching (자유공간분할 광교환을 위한 홀로그램 광연결 방법)

  • 장주석;박진상;지창환;정신일
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.60-70
    • /
    • 1995
  • As a Basic study to implement a wide-band photonic switching sysetm, we proposed a scheme of free-space-division-multiplexed photonic switching based on a holographic interconnectio method and carried out simple experiments on it. First, we recorded holgraphic interconnection element array for nonblocking optical interconnections. Just a single stage of the array realizes full optical interconnections between NN${\times}$NN input prots and NN${\times}$NN output ports in 3-D space. Next, in reading of the array for optical internnections, we showed that the zeroth-order diffacted beam could be eliminated in the output port by introducing a right angle prism. The elimination of the zeroth-order diffracted beam reduces optical noise in the output ports and provides conveniences of interconnection control in our scheme. Finally, from the experiments on ON-OFF switching of the optical interconnection paths one by one using a spatial (display of the liquid crystal telecision), we showed the feasibility of photonic wsitching based on the holographic interconnection method. We also estimated approximately the maximum interconnectio scale that can be realized without difficulty with current optical devices.

  • PDF

Dependence of CW Mode Locking on Resonator Mode Size in a Yb:YAG Laser Mode-Locked by a Semiconductor Saturable Absorber Mirror (반도체 포화 흡수체 반사경에 의해 모드 잠금된 Yb:YAG 레이저 출력의 공진기 모드 크기에 대한 의존성 연구)

  • Kim, Hyun Chul;Lim, Han Bum;Chae, Dong Won;Kim, Hyun Su
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.6
    • /
    • pp.312-317
    • /
    • 2015
  • We investigate the effect of laser-resonator mode size on the output of a Yb:YAG laser that is mode-locked by a semiconductor saturable absorber mirror (SESAM). We demonstrate that the smaller the product of the mode sizes at a SESAM and at a Yb:YAG crystal, the more stable the mode-locked output is. Also, we found numerically that there is a resonator length at which the mode-locked output occurs, regardless of the thermal lens effect of a Yb:YAG.

Colloidal Optics and Photonics: Photonic Crystals, Plasmonics, and Metamaterials

  • Jaewon Lee;Seungwoo Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.608-637
    • /
    • 2023
  • The initial motivation in colloid science and engineering was driven by the fact that colloids can serve as excellent models to study atomic and molecular behavior at the mesoscale or microscale. The thermal behaviors of actual atoms and molecules are similar to those of colloids at the mesoscale or microscale, with the primary distinction being the slower dynamics of the latter. While atoms and molecules are challenging to observe directly in situ, colloidal motions can be easily monitored in situ using simple and versatile optical microscopic imaging. This foundational approach in colloid research persisted until the 1980s, and began to be extensively implemented in optics and photonics research in the 1990s. This shift in research direction was brought by an interplay of several factors. In 1987, Yablonovitch and John modernized the concept of photonic crystals (initially conceptualized by Lord Rayleigh in 1887). Around this time, mesoscale dielectric colloids, which were predominantly in a suspended state, began to be self-assembled into three-dimensional (3D) crystals. For photonic crystals operating at optical frequencies (visible to near-infrared), mesoscale crystal units are needed. At that time, no manufacturing process could achieve this, except through colloidal self-assembly. This convergence of the thirst for advances in optics and photonics and the interest in the expanding field of colloids led to a significant shift in the research paradigm of colloids. Initially limited to polymers and ceramics, colloidal elements subsequently expanded to include semiconductors, metals, and DNA after the year 2000. As a result, the application of colloids extended beyond dielectric-based photonic crystals to encompass plasmonics, metamaterials, and metasurfaces, shaping the present field of colloidal optics and photonics. In this review we aim to introduce the research trajectory of colloidal optics and photonics over the past three decades; To elucidate the utility of colloids in photonic crystals, plasmonics, and metamaterials; And to present the challenges that must be overcome and potential research prospects for the future.

Low-dislocation-density large-diameter GaAs single crystal grown by vertical Bridgman method

  • Kawase, Tomohiro;Tatsumi, Masami;Fujita, Keiichiro
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.535-541
    • /
    • 1999
  • Low-dislocation-density large-diameter GaAs single crystals with low-residual-strain have been strongly required. We have developed dislocation-free 3-inch Si doped GaAs crystals for photonic devices, and low-dislocation-density low-residual-strain 4-inch to 6-inch semi-insulating GaAs crystals for electronic devices by Vertical Bridgman(VB) technique. We confirmed that VB substrates with low-residual-strain have higher resistance against slip-line generation during MBE process. VB-GaAs single crystals show uniform radial profile of resistivity reflecting to the flat solid-liquid interface during the crystal growth. Uniformity of micro-resistivity of VB-GaAs substrate is much better than of the LEC-GaAs substrate, which is due to the low-dislocation-density of VB-GaAs single crystals.

  • PDF

Characterization of Supercontinuum and Ultraviolet Pulses by Using XFROG

  • Tsermaa, Baatarchuluun;Yang, Byung-Kwan;Kim, Myung-Whun;Kim, Jin-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.158-165
    • /
    • 2009
  • We present cross-correlation frequency-resolved optical gating (XFROG) measurements of supercontinuum pulses generated by using a photonic crystal fiber (PCF), and ultraviolet (UV) pulses generated by frequency doubling of infrared ultra-short pulses. Since supercontinuum pulses have broad spectra, XFROG measurement typically requires using an extremely thin nonlinear crystal which has a thickness of sub-ten microns. Instead of using such a thin crystal, we employed a relatively thick crystal which was mounted on a galvanometer in order to achieve a phase-matching over the whole spectral bandwidth of the supercontinuum pulses by a crystal-dithering technique. Experimental results of the retrieved phase and intensity were in fair agreement with the independently measured data.