• Title/Summary/Keyword: Photonic Bandgap(PBG)

Search Result 40, Processing Time 0.02 seconds

Design of a Doherty Power Amplifier Using the Spiral PBG Structure for Linearity Improvement (나선형 구조의 PBG를 적용한 도허티 전력증폭기의 선형성 개선)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.115-119
    • /
    • 2008
  • In this paper, the linearity of Doherty power amplifier has been improved by applying a new Photonic Bandgap(PBG) structure on the output of amplifier. The reposed spiral PBG structure is a two-dimensional(2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. This structure has more broad stopband and high suppression performance than the conventional three cell PBG. Also, It has a sharp skirt property. We obtained the 3rd-order intermodulation distortion(IMD3) of -33dBc for CDMA applications with that of maintaining the constant power added efficiency(PAE), the IMD3 performance is improved as much as -8 dB compared with a Doherty power amplifier without PBG structure. Moreover, the physical length of PBG is shortened, therefore the whole amplifier circuit size is considerably reduced.

Femtosecond nonlinear optical shift in photonic bandgapedges of a cholesteric liquid crystal (롤레스테릭 액정의 광결정 가장자리에서의 펨토초 비선형 광학 이동)

  • Jisoo Hwang;N. Y. Ha;H. J. Chang;Park, Byoungchoo;J. W. Wu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.164-165
    • /
    • 2003
  • A cholesteric liquid crystal (CLC) system exhibits one-dimensional (1-D) Photonic bandgap (PBG) characteristics in the transmission spectrum through a selective Bragg reflection. Related to the nonlinear optical (NLO) processes in a PBG structure of CLC, the inherent periodicity has been exploited to Phase-match the fundamental and the harmonic waves through the umklapp Processes. Near bandgap edges of a CLC, harmonic generations have been shown to be enhanced significantly through the field localization. (omitted)

  • PDF

Design and Implementation of Balanced Low Noise Amplifier by Using PBG (PBG(Photonic Bandgap)를 이용한 평형 저잡음 증폭기의 설계 및 구현)

  • 이상만;조성희;서철헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.354-357
    • /
    • 2003
  • The low noise and balanced amlifier has been designed by using PBG. Usually balanced LNAis used to matching the input and output mismatching that caused by matching the low noise matching point. And the PBG supresses the harmoincs. This paper proposed balanced LNA by using PBG. And this configuration improve the performance - noise figure, VSWR.

  • PDF

Lowpass Filter Design for eliminate the harmonic signals using Photonic bandgap structure (PBG구조를 이용한 저역통과 필티의 설계)

  • 김장권;조영빈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.383-386
    • /
    • 2002
  • The goal of this study is to realize the PBG lowpass filter using novel PBG structure modification both upper layer and ground layer. It has been designed three aperture slots of ground layer for PBG structure which the center slot shape of ground is two type, rectangular and dumbbell. This PBG LPF llas the character of the broader stopband and smaller size than typical LPF. The measurement results have matched the simulated ones. It has the cutoff frequency of each 4.4650Hz and 3.520Hz and at least -2OdB of the signal suppression at the stopband.

  • PDF

Design of Microstrip PBG structure and Duplexer using PBG Cell with Stub (스텁을 갖는 PBG 셀로 구현한 마이크로스트립 PBG 구조 및 듀플렉서)

  • Jang, Mi-Young;Kee, Chul-Sik;Park, Ik-Mo;Lim, Han-Jo;Kim, Tae-Il;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.39-48
    • /
    • 2001
  • We have studied the design of the photonic bandgap (PBG) structure on the microstrip line that can effectively control the fractional bandwidth of the passband formed in the stopband by adding the stub in the cell of the microstrip PBG structure. As the length of the stub increases, the cutoff frequency and the center frequency of the stopband are decreased, while the bandwidth of the stopband is increased. We have also found that the fractional bandwidth of the passband formed in stopband by the introduction of defect decreases as the stub length is increased. These results mean that adding the stub in the normal PBG structure is an effective way to control the fractional bandwidth. As an application example, we have implemented a microwave duplexer using the proposed structure.

  • PDF

A Study of Low Phase Noise VCO using PBG (PBG를 이용한 저위상잡음 VCO에 관한 연구)

  • Oh Ic-Su;Seo Chul-Hun;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.20-22
    • /
    • 2003
  • 본 논문에서는 Photonic Bandgap(PBG)를 공진 특성을 이용하여 마이크로파 발진기의 위상잡음을 줄이기 위한 기술을 제시한다. 마이크로스트립 라인으로 구현한 공진기는 낮은 Q(Quality factor)를 가진다. PBG를 적용했을 때 공진기의 Q값을 높여줌으로써 발진기의 위상잡음 특성이 향상됨을 보이고자 한다.

  • PDF

Research on PAE of Doherty Amplifier with Low-pass Filter of Wide Stopband (광대역 특성의 LPF를 이용한 도허티 증폭기의 전력 효율 향상에 관한 연구)

  • Jung, Du-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.107-111
    • /
    • 2009
  • In this paper, the power added efficiency(PAE) of a Doherty amplifier has been improved by applying Photonic Bandgap(PBG) characteristics on the output of amplifier. As a result of the high order harmonics termination, excellent improvement in PAE, maximum output power as well as linearity is obtained. The PAE is improved as much as relatively 35% compared with a conventional Doherty amplifier. Moreover, size of LPF is reduced by PBG characteristics. Therefore the whole amplifier circuit size is considerably reduced by diminishing in size of the LPF as compared with a Doherty amplifier using conventional LPFs.

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Design of Power Plane for Suppressing Spurious Resonances in High Speed PCBs

  • Oh Seung-Seok;Kim Jung-Min;Yook Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 2006
  • This paper presents a new power plane design method incorporating a single geometry derived from a unit cell of photonic bandgap(PBG) structure. This method yields constantly wide suppression of parallel plate resonances from 0.9 GHz to 4.2 GHz and is very efficient to eliminate PCB resonances in a specified frequency region to provide effective suppression of simultaneous switching noise(SSN). It is shown that with only two cells the propagation of unwanted high frequency signals is effectively suppressed, while it could provide continuous return signal path. The measured results agree very well with theoretically predicted ones, and confirm that proposed method is effective for reducing EMI, with measured near-field distribution. The proposed topology is suitable for design of high speed digital system.

A Novel PBG structure LPF for Performance improvement of Microstrip Circuits. (마이크로스트립 회로 성능 개선을 위한 새로운 PBG 구조의 LPF)

  • 김태선;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.430-434
    • /
    • 2000
  • In this paper, a novel photonic bandgap(PBG) structure is proposed for increasing stropband of lowpass filter without the size increment of circuit for application in microstrip circuits. The proposed structure is connected in parallel two periodic structures which have different center frequency of the stopband. The wide stopband is achieved by two periodic structures of two different stopbands. We also show the performance improvement of microstrip patch antenna by etching of the proposed structure in ground plane.

  • PDF