• Title/Summary/Keyword: Photon flux

Search Result 200, Processing Time 0.035 seconds

Effects of Water Stress on Leaf Orientation, Apparent Photosynthetic Rate, Transpiration Rate, Yield and Its Related Traits in Soybean Plants (한발조건이 콩식물체의 엽운동, 광합성능, 증산량, 수량 및 관련 형질에 미치는 영향)

  • 천종은;김진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.313-319
    • /
    • 1992
  • To investigate effects of water stress on apparent photosynthetic, transpiration rates, leaf orientation, yield and its related traits, four soybean varieties were planted on the Wagner pots in a plastic house covered with polyethylene film. As the light intensity and leaf temperature in a day increased, the movement of central leaflet in the second leaf of main stem occurred earlier than that of the lateral leaflet. The apparent photosynthetic rate of the central leaflet was higher than that of the lateral leaflet, but light intercept and leaf temperature of lateral leaflet were higher than those of the central leaflet. The apparent photosynthetic rate had highly positive correlation with the photon flux density, stomatal conductance and temperature, respectively. The photon flux density, stomatal conductance, transpiration and photosynthetic rates in the control were significantly higher than those in the water stress plot. The yield and its related traits in the water stress plot became decreased significantly in comparison with the control.

  • PDF

Meteorological Data Measured under Agrivoltaic Systems in Boseong-gun during Winter Barley Season (영농형 태양광 시설 하부의 미기상 관측 자료: 보성에서 2019년 11월부터 2020년 5월까지 가을보리 재배기간 동안)

  • Cho, Yuna;Yoon, Changyong;Kim, Hyunki;Moon, Hyundong;An, Kyu-Nam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.144-151
    • /
    • 2020
  • Agrivoltaic systems (AVS) is defined as combining farm-grown crops with photovoltaic panels (PV) installed several meters above the ground. Solar radiation (W/㎡), photosynthetic photon flux density (PPFD, µmol/㎡/s), air temperature (℃), vapor pressure (kPa), soil moisture (㎥/㎥), soil temperature (℃), wind direction (˚), and wind speed (m/s) were measured under the AVS in Boseong-gun during winter barley season. Data was collected by 5 minute interval. All data can download at Github site (https://github.com/chojaeil/AVS_Boseung). To gap-filling missing solar radiation data during about two weeks, the conversion coefficient from solar radiation to PPFD was estimated as 0.41. Further, according to the ratio of diffuse radiation to direct radiation, the maximum value among the twenty PPFD sensors under the AVS was related to the PPFD value of filed.

Evapotranspiration Rate of Grafted Seedlings Affected by Relative Humidity and Photosynthetic Photon Flux under Artificial Lighting (인공광하에서 접목묘의 증발산속도에 미치는 상대습도와 광합성유효광량자속의 효과)

  • 김용현;박현수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.379-384
    • /
    • 2001
  • To enhance the smooth graft-taking of grafted seedlings, the excessive evapotranspiration from grafted seedlings just after grafting should be avoided. A measurement system of the evapotranspiration rate of grafted seedling under artificial lighting was set up to investigate the effect of physical environment on the evapotranspiration and graft-taking characteristics of grafted seedlings quantitatively. The evapotranspiration rate of grafted seedlings affected by relative humidity and light intensity were analyzed using the measurement system. The hypocotyl of watermelons (Citrullus vulgaris cv. Sweetdew, Hungnong Seed Co.) was slantly cut and then inserted into a hole on the stem of rootstock (Lagenaria siceraria cv. FR-King, Hungnong Seed Co.). Grafted seedlings were healed and joined for 5 days under cool-white fluorescent lamps (FL20SEX-d/18, Keumho Electric Co.) with photoperiod of 12h$.$d$\^$-1/ except dark period for one day after grafting in a closed graft-taking enhancement system developed by Kim(2000). The evapotranspiration rate and graft-taking of grafted seedling at air temperature of 23$\^{C}$ and air current speed of 0.1m$.$s$\^$-1/ was highly affected by relative humidity. But light intensity showed higher effect on the stem length of scion than relative humidity. In conclusion, it was suggested that relative humidity should be controlled at higher than 90% with photosynthetic photon flux of 50$\mu$mol$.$m$^2$$.$s$\^$-1/ to increase the survival of grafted seedlings and to produce healthy seedlings.

  • PDF

A Study on Growth of the Green Leaf Lettuce Depends on PPFD and Light Quality of LED Lighting Source for Growing Plant (식물재배용 LED 광원의 광질과 PPFD에 따른 청치마상추의 성장에 관한 연구)

  • Yang, Jun-Hyuk;Choi, Won-Ho;Park, Noh-Joon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • The artificial light sources for growth of plant are usually high-pressure sodium lamp, metal haloids lamp, and fluorescent light; however, these light sources have relatively weaker Red and Blue lights that are necessary for growth of plants. Especially the effect of Photosynthetic Photon Flux Density (PPFD) is pointed out as the weakness. Meanwhile, LED light source can be selected by specific wavelength to greatly improve the effect of PPFD. In this regard, this paper aims to investigate the promotion of plant growth by measuring photosynthetic photon flux density (hereafter referred to as PPFD) according to changes in light quality of the LED light sources. Towards this end, LED light sources for plant growth were produced with 4 kinds of mono-chromatic lights and 6 kinds of combined lights by mixing red, blue, green and white lights. A comparative analysis was conducted to investigate the effects of optical properties and PPFD on plants (green leaf lettuce) using the produced light sources. The results monochromatic light has fastest growth rate, but plant growth conditions have poor. This being so, mixed light is suitable for the green leaf lettuce.

Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source (LED와 태양광 하이브리드 광원을 이용한 광생물 반응기용 도광판 설계 및 제작)

  • Lim, Hyon-Chol;Yang, Seung-Jin;Baek, Jun-Hyeok;Kim, Jae-Young;Jang, Kyungmin;Kim, Jongtye;Jeong, Sanghwa;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • In this paper, we report the results of a study on the design and fabrication of a light-guiding plate (LGP) using a hybrid light-emitting diode (LED) and sunlight source that can be applied to a photobioreactor. LGP patterns for the LED source were designed and engraved on an LGP, together with previously reported patterns for a sunlight source. A control system for the hybrid LGP was designed to maintain the output photon flux density (PFD) from the LGP at a constant value. When the target value of the output PFD was set to $70{\mu}E/(m^2{\cdot}s)$, the error range of the output PFD was found to be within ${\pm}2%$.

Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions (광 및 CO2 변화 조건에서 브로콜리(Brassica oleracea var. italica)의 전기적 신호 모니터링)

  • Park, Jin Hee;Kim, Han-Na
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.351-356
    • /
    • 2021
  • Changing environmental conditions can affect plant growth by influencing water and nutrient transport and photosynthesis. Plant physiological responses under changing environmental conditions can be non-destructively monitored using electrodes as plant induced electrical signal (PIES). Objective of the study was to monitor PIES in response to increased CO2 and decreased photosynthetic photon flux density (PPFD). The PIES increased during day time when transpiration and photosynthesis occurs and monitored CO2 concentration was negatively correlated to the PIES. Enhanced CO2 concentration slightly reduced PIES, but the effect of increased CO2 was limited by light intensity. The effect of reduced PPFD was not appeared immediately because water and nutrient transport was not promptly affected by the light. The study was conducted to evaluate short-term effect of increasing CO2 and decreasing PPFD, hence proline content and chlorophyll fluorescence was not significantly affected by the conditions.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Construction of Inverse Photoemission Spectrometer and Its Application (역광전자분광기의 제작 및 그 응용)

  • Kim, Jeong-Won;Kim, Se-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.719-723
    • /
    • 1996
  • An inverse photoemission spectrometer has been built and tested to study the unoccupied electron energy states of solid surfaces. It consists of a low energy electron gun and a band pass photon detector in an ultra-high vacuum chamber. The electron ray tracing simulation and current measurement of the electron gun show a good focus and a high flux of electron current. The overall resolution of the spectrometer is 0.74 eV and the sensitivity of the photon detector is about 10 counts/$sec{\cdot}{\mu}A.$ As a test experiment, the inverse photoemission spectra of a Ge(111) sample is in good agreement with the theoretical result.

  • PDF

Monte Carlo approach for calculation of mass energy absorption coefficients of some amino acids

  • Bozkurt, Ahmet;Sengul, Aycan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3044-3050
    • /
    • 2021
  • This study offers a Monte Carlo alternative for computing mass energy absorption coefficients of any material through calculation of photon energy deposited per mass of the sample and the energy flux obtained inside a sample volume. This approach is applied in this study to evaluate mass energy absorption coefficients of some amino acids found in human body at twenty-eight different photon energies between 10 keV and 20 MeV. The simulations involved a pencil beam source modeled to emit a parallel beam of mono-energetic photons toward a 1 mean free path thick sample of rectangular parallelepiped geometry. All the components in the problem geometry were surrounded by a 100 cm vacuum sphere to avoid any interactions in materials other than the absorber itself. The results computed using the Monte Carlo radiation transport packages MCNP6.2 and GAMOS5.1 were checked against the theoretical values available from the tables of XMUDAT database. These comparisons indicate very good agreement and support the conclusion that Monte Carlo technique utilized in this fashion may be used as a computational tool for determining the mass energy absorption coefficients of any material whose data are not available in the literature.

Development of Quantification Method for Bioluminescence Imaging (발광영상에 대한 정량화 방법 개발)

  • Kim, Hyeon-Sik;Choi, Eun-Seo;Tak, Yoon-O;Choi, Heung-Kook;Lee, Ju-Young;Min, Jung-Joon;Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.451-458
    • /
    • 2009
  • Purpose: Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. Materials and Methods: We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. Results: We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. Conclusion: The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipments with presenting linear response behavior of constant light emitting sources to measurement time.