• 제목/요약/키워드: Photon energy

검색결과 651건 처리시간 0.029초

비정질 실리콘 박막 트랜지스터의 광특성 분석을 위한 백라이트의 광자 에너지 스펙트럼에 대한 연구 (A Study on the Photon Energy Spectrums of Backlight for the Analysis of the Photoelectric Characteristics of a-Si:H TFT)

  • 정경서;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1058-1062
    • /
    • 2009
  • For the investigation of the mechanism of photoelectric characteristics of a hydrogenated amorphous silicon thin film transistor(a-Si:H TFT), spectral characteristics of various backlights were analyzed in terms of the photon energy at each wavelength. Photon energy spectral characteristics were obtained through the multiplication of each photon energy and spectral intensities of backlights at each wavelength and the total photon energies were obtained by the integration of the photon energy spectrums. From the comparison of the experimental photo leakage current and the calculated photon energy, it was possible to conclude that the absorption of illuminated backlight to a-Si:H layer and the generation of electrons and holes are mainly carried out at the wavelength less than 500 nm as described in previous reports.

Development of Laser-driven Proton Source Toward Its Applications

  • Sagisaka, Akito;Daido, Hiroyuki;Pirozhkov, Alexander S.;Yogo, Akifumi;Ogura, Koichi;Orimo, Satoshi;Ma, Jinglong;Mori, Michiaki;Nishiuchi, Mamiko;Bulanov, Sergei V.;Esirkepov, Timur Zh.;Oishi, Yuji;Nayuki, Takuya;Fujii, Takashi;Nemoto, Koshichi;Nagatomo, Hideo
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.37-41
    • /
    • 2009
  • We observe the proton signals produced by laser interaction with thin-foil targets of polyimide and of copper. We change the thickness of the polyimide target to $7.5{\mu}m$, $12.5{\mu}m$, and $50{\mu}m$. High-energy protons with the maximum energy of ${\sim}2.3\;MeV$ from $7.5{\mu}m$ thick polyimide are observed. This proton beam with the maximum energy of multi-MeV has various applications such as a proton shadowgraphy.

Effects of Photon Energy Spectrum on the Photocurrent of Hydrogenated Amorphous Silicon Thin Film Transistor by Using Frequency Filters

  • Cho, Eou Sik;Kwon, Sang Jik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.16-19
    • /
    • 2013
  • Frequency filters with various filtering wavelengths were used in the photoelectric characterization of hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) and the experimental results were described and analyzed in terms of the photon energy spectral characteristics calculated from the integration of the photon energy and the spectral intensity of transmitted backlight through the filters at each wavelength. From the comparison of the photocurrents and the calculated photon energy spectrums for the filtered ranges of wavelength, it was possible to conclude that the photocurrents are closely related to the photon energy spectrums of the backlight.

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao;Shen, Jie;Zhang, Shijian;Zhang, Jie;Zhang, Nan;Egorov, Ivan Sergeevich;Yan, Sha;Tan, Chang;Remnev, Gennady Efimovich;Le, Xiaoyun
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.666-673
    • /
    • 2022
  • The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

Optimization of Energy Modulation Filter for Dual Energy CBCT Using Geant4 Monte-Carlo Simulation

  • Ju, Eun Bin;Ahn, So Hyun;Choi, Sang Gyu;Lee, Rena
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.125-130
    • /
    • 2016
  • Dual energy computed tomography (DECT) is used to classify two materials and quantify the mass density of each material in the human body. An energy modulation filter based DECT could acquire two images, which are generated by the low- and high-energy photon spectra, in one scan, with one tube and detector. In the case of DECT using the energy modulation filter, the filter should perform the optimization process for the type of materials and thicknesses for generating two photon spectra. In this study, Geant4 Monte-Carlo simulation toolkit was used to execute the optimization process for determining the property of the energy modulation filter. In the process, various materials used for the energy modulation filter are copper (Cu, $8.96g/cm^3$), niobium (Nb, $8.57g/cm^3$), stannum (Sn, $7.31g/cm^3$), gold (Au, $19.32g/cm^3$), and lead (Pb, $11.34g/cm^3$). The thickness of the modulation filter varied from 0.1 mm to 1.0 mm. To evaluate the overlap region of the low- and high-energy spectrum, Geant4 Monte-Carlo simulation is used. The variation of the photon flux and the mean energy of photon spectrum that passes through the energy modulation filter are evaluated. In the primary photon spectrum of 80 kVp, the optimal modulation filter is a 0.1 mm lead filter that can acquire the same mean energy of 140 kVp photon spectrum. The lead filter of 0.1 mm based dual energy CBCT is required to increase the tube current 4.37 times than the original tube current owing to the 77.1% attenuation in the filter.

A Study of Dark Photon at the Electron-Positron Collider Experiments Using KISTI-5 Supercomputer

  • Park, Kihong;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.55-63
    • /
    • 2021
  • The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.

유방촬영의 kV X-선 빔에서 유효광자에너지에 대한 계산식 (Calculation Formula for Effective Photon Energy in kV X-ray Beam of Mammography)

  • 박영온;이상훈;김종언
    • 한국방사선학회논문지
    • /
    • 제17권4호
    • /
    • pp.507-514
    • /
    • 2023
  • 이 연구의 목적은 유방촬영의 X-선 빔에서 유효광자에너지를 쉽게 계산할 수 있는 계산식을 구하는데 있다. X2 MAM Sensor를 사용하여 각각의 설정관전압에 대하여 측정관전압을 얻었다. 알루미늄 여과체의 알루미늄에 대한 질량감쇠계수는 각각의 측정관전압 X-선 빔에서 반가층 측정으로부터 구하였다. 각각의 측정관전압 X-선 빔으로부터 구하여진 알루미늄의 질량감쇠계수는 NIST로부터 얻어진 광자에너지별 알루미늄의 질량감쇠계수에 대응시켰다. 일치하는 질량감쇠계수에 대응하는 광자에너지가 유효광자에너지로 결정되었다. 결정된 유효광자에너지의 계산식은 Origin pro 2019b 통계프로그램에서 각각의 측정관전압에 대한 유효광자에너지를 다항식으로 정합하여 y=28.98968-1.91738x+0.07786x2-0.000946717x3으로 얻었다. 여기서 x는 측정관전압이고, y는 유효광자에너지이다. 이 연구에서 얻어진 유방촬영 X-선 빔의 유효광자에너지의 계산식은 임상에서 X-선 빔과 어떤 물질과의 상호작용 계수를 구하는데 아주 유용하게 사용될 수 있을 것으로 사료된다.

On-the-fly energy release per fission model in STREAM with explicit neutron and photon heating

  • Nhan Nguyen Trong Mai;Woonghee Lee;Kyeongwon Kim;Bamidele Ebiwonjumi;Wonkyeong Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The on-the-fly energy release per fission (OTFK) model is implemented in STREAM to continuously update the Kappa values during the depletion calculation. The explicit neutron and photon energy distribution, which has not been considered in previous STREAM versions, is incorporated into the existing on-the-fly model. The impacts of the modified OTFK model with explicit neutron and photon heating in STREAM on the power distribution, fuel temperature, and other core parameters during depletion with feedback calculations are studied using several problems from the VERA benchmark suit. Overall, the explicit heating calculation provides a better power map for the feedback calculations particularly when strong gamma emitters are present. Generally, the fuel temperature decreases when neutron and photon heating is employed because fission neutrons and gamma rays are transported away from their points of generation. This energy release model in STREAM indicates that gamma energy accounts for approximately 9.5%-10% of the total energy released, and approximately 2.4%-2.6% of the total energy released will be deposited in the coolant for the VERA 5, NuScale, and Yonggwang Unit 3 2D cores.