• Title/Summary/Keyword: Photon characteristics

Search Result 269, Processing Time 0.028 seconds

Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

  • Jang, Beom-Su;Lee, Joo-Sang;Rho, Jong Kook;Park, Sang Hyun
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.235-240
    • /
    • 2012
  • $^{99m}Tc$ tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a $^{99m}Tc$-tricarbonyl precursor with a low oxidation state (I). $^{99m}Tc(CO)_3(H_2O)_3^+$ was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of $^{99m}Tc$-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of $^{99m}Tc$-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of $^{99m}Tc$-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of $^{99m}Tc$ tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of $^{99m}Tc$-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of $^{99m}Tc$ tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a $^{99m}Tc$-tricarbonyl-based biomolecular imaging probe.

Ecophysiological characteristics of Rosa rugosa under different environmental factors

  • Young-Been Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.85-102
    • /
    • 2023
  • Background: Ecophysiological characteristics of Rosa rugosa were analyzed under different environmental factors from May to October 2022. Photosynthesis, chlorophyll fluorescence, chlorophyll content, leaf water content (LWC), osmolality, carbohydrate content, and total ion content were measured to compare the physiological characteristics of R. rugosa at two study sites (i.e., in large pots and in the Goraebul coastal sand dune area). Results: When R. rugosa was exposed to high temperatures, photosynthetic parameters including net photosynthetic rate (PN) and stomatal conductance (gs) in both experiment areas declined. In addition, severe photoinhibition occurs when R. rugosa is continuously exposed to high photosynthetically active radiation (PAR), and because of this, relatively low Y(II) (i.e., the quantum yield of photochemical energy conversion in photosystem II [PSII]) and high Y(NO) (i.e., the quantum yield of non-regulated, non-photochemical energy loss in PSII) in the R. rugosa of the pot were observed. As the high Y(NPQ) (i.e., the quantum yield of regulated non-photochemical energy loss in PSII) of R. rugosa in the coastal sand dune, they dissipated the excessed photon energy through the non-photochemical quenching (NPQ) mechanism when they were exposed to relatively low PAR and low temperature. Rosa rugosa in the coastal sand dune has higher chlorophyll a and carotenoid content. The high chlorophyll a + b and low chlorophyll a/b ratios seemed to optimize light absorption in response to low PAR. High carotenoid content played an important role in NPQ. As a part of the osmotic regulation in response to low LWCs, R. rugosa exposed to high temperatures and continuously high PAR used soluble carbohydrates and ions to maintain high osmolality. Conclusions: We found that Fv/Fm was lower in the potted plants than in the coastal sand dune plants, indicating the vulnerability of R. rugosa to high temperatures and PAR levels. We expect that the suitable habitat range for R. rugosa will shrink and move to north under climate change conditions.

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

Photo-induced chemical change of di-fluoride in the CYTOP doped graphene

  • Yang, Mi-Hyun;Manoj, Sharma;Ihm, Kyuwook;Ahn, Joung Real
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.115-115
    • /
    • 2015
  • Many efforts have been devoted on chemical modification of graphene layer to modulate its electrical properties. In the previous report, laser irradiation on the CYTOP (Amorphous Fluoropolymer) covered graphene layer induces chemical modification wherein carbon fluoride is formed on the graphene surface. This results in the insulating I-V characteristics, which have been attracting much research interests on it. However, the direct analytical evidence of the fluoride formation on graphene surface is not yet studied. In this work we investigated what happened on the CYTOP/graphene interface during photon irradiation using spatially resolved photoemission spectroscopy method. It is found that the soft x-ray (614 eV) induces desorption of fluoride atoms from the CYTOP and change di-fluoride form to mono-fluoride. As the photo-induced fluorine desorption is continue strong dipole field generated by initial di-fluoride forms is gradually decreased, resulting in the overall binding energy shift of the C 1s core levels. Both photo-modified CYTOP and CYTOP starts to desorb above $286^{\circ}C$ (~ 0.047 eV), which means that no strong chemical interaction between CYTOP and graphene is established.

  • PDF

A Study on the Characteristics of Therapy Radiation Detector with Diode (다이오드를 이용한 치료방사선 검출기의 특성에 관한 연구)

  • 이동훈;지영훈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • High-energy and high-dose X-ray and electron beam have been used in radiation therapy after developing particle accelerators. It is recommended to irradiate patients exect real dose for improving therapy effectiveness by International Committee on Radiation Units and Measurement. The radiation detector for daily beam checks of medical accelerators is described. Using thirteen silicon diodes, we have designed the diode detector providing information about calibration, beam symmetry, flatness, stability variation according to radiation damage, time and general quality assurance for both photon and eletron beams. we also compared these measurement values with those of using ionization chamber, film and semiconductor dosimeter.

  • PDF

Carbon Dioxide Budget in Phragmites communis Stands

  • Ihm, Hyun-Bin;Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Ha-Song
    • The Korean Journal of Ecology
    • /
    • v.24 no.6
    • /
    • pp.335-339
    • /
    • 2001
  • The dynamic model was developed to simulate the photosynthetic rate of Phragmites communis stands in coastal ecosystem. The model was composed of the compartments of both climatic and biological variables. The former were photosynthetic photon flux density(PPFD), daily maximum- and minimum-temperature. The latter were combinations of the specific physiological responses of plant organs with the biomass of each organs. The PPFD and air temperature were calculated and using those values, gas exchange rate of each plant organ was calculated at every hour. The carbon budget was constructed using the modelled predictions. Analysis of annual productivity and fluxes showed that yearly gross population productivity, yearly population respiration and yearly net population productivity were 33.4, 21.3 and 12.1 $CO_2ton{\cdot}ha^{-2}{\cdot}yr^{-1}$, respectively. The final result was tested over two stands, produced promising predictions with regards to the levels of production attained. The model can be used to determine production potential under given climatic conditions and could even be applied to plant canopies with analogous biological characteristics.

  • PDF

Numerical Analysis of Optical Damage in Dielectrics Irradiated by Ultra-Short Pulsed Lasers (극초단 펄스 레이저에 의한 절연체의 광학 손상 해석)

  • Lee, Seong-Hyuk;Kang, Kwang-Gu;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1213-1218
    • /
    • 2004
  • The present article reports extensive numerical results on the non-local characteristics of ultra-short pulsed laser-induced breakdowns of fused silica ($SiO_{2}$) by using the multivariate Fokker-Planck equation. The nonlocal type of multivariate Fokker-Planck equation is modeled on the basis of the Boltzmann transport formalism to describe the ultra-short pulsed laser-induced damage phenomena in the energy-position space, together with avalanche ionization, three-body recombination, and multiphoton ionization. Effects of electron avalanche, recombination, and multiphoton ionization on the electronic transport are examined. From the results, it is observed that the recombination becomes prominent and contributes to reduce substantially the rate of increase in electron number density when the electron density exceeds a certain threshold. With very intense laser irradiation, a strong absorption of laser energy takes place and an initially transparent solid is converted to a metallic state, well known as laser-induced breakdown. It is also found that full ionization is provided at intensities above threshold, all further laser energy is deposited within a thin skin depth.

  • PDF

The Construction of Solid State Detector System Using Commercially Available Diode and Its Application (정류기형 다이오드를 이용한 반도체 방사선 검출 장치의 제작과 그 응용에 관한 연구)

  • 신동오;홍성언;이병용;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.91-95
    • /
    • 1990
  • The solid state detector system was constructed using commercially available rectifier diode for the assessment of quality assurance in radiotherapy. Dosimetry system which consists of the electrometer and the water phanton was used for measuring small field size scanning. The measured results, which had linearity in accordance with variation of radiation dose for gamma-ray of Co- 60 and 6 and 10MV photons of linear accelerator, showed quite linear characteristics within 1% error. The percent depth dose of 10MV photon of Mevatron KD linear accelerator was measured in small field size using diode, and the results were compared with that of using ion chambers. The results show that the difference of percent depth dose between the value of diode and that of ion chamber was negligible in large field size. However, in small size less than 4$\times$4cm, the difference of percent depth dose estimated by diode and ion chamber was 4.7% by extrapolation to 0$\times$0cm. Considering the smaller volume of diode than that of ion chamber, it might be more reliable to use diode for estimating percent depth dose. Above results suggest that diode can be used for routine check such as beam profile, flatness, symmetry and energy

  • PDF

Metal-Semiconductor-Metal Photodetector Fabricated on Thin Polysilicon Film (다결정 실리콘 박막으로 구성된 Metal-Semiconductor-Metal 광검출기의 제조)

  • Lee, Jae-Sung;Choi, Kyeong-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.276-283
    • /
    • 2017
  • A polysilicon-based metal-semiconductor-metal (MSM) photodetector was fabricated by means of our new methods. Its photoresponse characteristics were analyzed to see if it could be applied to a sensor system. The processes on which this study focused were an alloy-annealing process to form metal-polysilicon contacts, a post-annealing process for better light absorption of as-deposited polysilicon, and a passivation process for lowering defect density in polysilicon. When the alloy annealing was achieved at about $400^{\circ}C$, metal-polysilicon Schottky contacts sustained a stable potential barrier, decreasing the dark current. For better surface morphology of polysilicon, rapid thermal annealing (RTA) or furnace annealing at around $900^{\circ}C$ was suitable as a post-annealing process, because it supplied polysilicon layers with a smoother surface and a proper grain size for photon absorption. For the passivation of defects in polysilicon, hydrogen-ion implantation was chosen, because it is easy to implant hydrogen into the polysilicon. MSM photodetectors based on the suggested processes showed a higher sensitivity for photocurrent detection and a stable Schottky contact barrier to lower the dark current and are therefore applicable to sensor systems.

VLC Channel Model Considering Indirect Light (간접 조명 환경 실내 가시광 통신의 채널 모델)

  • Lee, Jung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.8
    • /
    • pp.706-712
    • /
    • 2013
  • In this paper, channel modeling of VLC(Visible Light Communication) was investigated under indirect lightning circumstance which was the way that all phontons started from LED(Light Emitting Diode) were reached on the floor with NLOS paths. I supposed width(6m), depth(4m), height(2.2m) cube room circumstance for VLC communication channel and supposed that 4 LEDs were located at 2m height, which emitted photons at the direction of wall and ceiling. Channel characteristics, which were power attenuation and delayed receiving of light signal, were abstracted from receivers(PDs) which were located at 0.5m above from floor. The availability of channel was verified via BPSK based communication simulation.