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Carbon Dioxide Budget in Phragmites communis Stands
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ABSTRACT: The dynamic model was developed to simulate the photosynthetic rate of Phragmites communis
stands in coastal ecosystem. The model was composed of the compartments of both climatic and biclogical vari-
ables. The former were photosynthetic photon flux density (PPFD), daily maximum- and minimum-temperature.
The latter were combinations of the specific physiological responses of plant organs with the biomass of each
organs. The PPFD and air temperature were calculated and using those values, gas exchange rate of each plant
organ was calculated at every hour. The carbon budget was constructed using the modelled predictions. Analysis
of annual productivity and fluxes showed that yearly gross population productivity, yearly population respiration and
yearly net population productivity were 33.4, 21.3 and 12.1 CO? ton - ha2 - yr', respectively. The final result was
tested over two stands, produced promising predictions with regards to the levels of production attained. The model
can be used to determine production potential under given climatic conditions and could even be applied to plant

canopies with analogous biological characteristics.
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INTRODUCTION

Phragmites communis (common reed) is a Cs carbon metabo-
lism grass, is considered as highly productive, and has a wide
global distribution, often present in wet regions as vast homoge-
neous expanses of reed bads (Allirand and Gosse 1995). P.
communis community grows mostly in fresh but also in brackish
and saline water (Min and Kim 1983, Oh and Ihm 1983, Ihm et
al. 2007). They are broadly distributed in the westem and south-
ern coast in Korea (Kim et al. 1982, Oh and Jhm 1983, Ihm and
Lee 1998). These reeds have been utilized to produce non-food
commodities, such as paper pulp, roofing and building materials,
and in waste water treatment plants (Allirand and Gosse 1995).

The stand development and biomass production of P. com-
munis have been studied intensively in the field (Haslam 1969a,
1969b, 1970, Dykyjova et al. 1970, Kvet 1971, Dykyjova and
Pribil 1975, Fiala 1976, Ho 1979). Such characteristics as CO;
exchange and salt tolerence have been evaluted in the different
locations (Purer 1942, Walker and Waygood 1968, Sieghardt
1973, Gloser 1977, Matoh et al. 1988, Cizkova and Bauer 1998,
Lissner et al. 1999).

In Korea, Kim (1971, 1975) studied the process of plant com-
munity formation and standing crops in  P. communis stands.
The productivity of P. communis community was studied by Kim
et al. (1972) in Yeongnam and Kyonggi regions, Min and Kim
(1983) in Inchon, and Oh and Ihm (1983) in the Sumiin river

estuary. Chang and Oh (1977) and Chang et al. (1978) studied
the litter decomposition in Phragmites grassland in the delta of
the Nakdong river.

Although many experiments have analyzed the growth
dynamics of P. communis, few researchers have attempted to
analyze the change of the primary production for Phragmites
species using numerical simulation models (Kim et al. 1972,
Allirand and Gosse 1995, Asaeda and Karunaratne 2000.).

The purpose of this paper is to analyze the effects of PPFD
and air temperature on carbon dioxide budget of a well-estab-
lished P. communis stands growing in coastal wetlands in
Korea. Net annual photosynthesis is estimated by an empirical
model developed on the basis of the measurements of both bio-
metrical data and ecophysiological processes such as leaf pho-
tosynthesis and the respiration of leaves, stems and roots and
rhizomes.

MATERIALS AND METHODS

The study site is located in Seoho-ri, cheongkye-myon, Muan-
gun, Cheollanamdo Province (34° 58" E, 126° 24’ N). The site is
covered by a well-established P. communis stands, which are
about 3.2 m in height in August. During the last 30 years the
observations by Mokpo meterological station near Muan showed
that the annual precipitation is around 1217 mm, 45-60 percent
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of it comes in summer, and only 3-10 percent in winter.

The vertical light transmittance within the stand was measured
on a ladder at 0.1 m intervals within the canopy at near noon on
afine day (11:00 to 14:00 solar time) in August. To measure hor-
izontal light intensity was established by running string horizon-
tally within a 5 x 5 m quadrat and the light intensity was mea-
sured at least 10 times at each intersecting point each height.
The relative light intensity was determined using the method
described by Kim (1985). Using above results the vertical and
the horizontal light intensity within the canopy were calculated on
the basis of the Lambert-Beer Law (Monsi and Saeki 1953,
Ondok 1973). Gas exchange of leaves, stems and roots and rhi-
zomes were measured using an infra-red gas analyzer (ADC,
UK).

RESULTS AND DISCUSSION

Model structure

The model was composed of the compartments of both climat-
ic and biological variables. The former were photosynthetic pho-
ton flux density (PPFD), daily maximum- and minimum-tempera-
ture. The latter were combinations of the specific physiological
responses of plant organs with the biomass of the respective
organs (Fig. 1).

The PPFD and air temperature were calculated and using
their values the gas exchange rate of each plant organ was cal-
culated at every hour. They were summed up as daily and annu-
al outpuits.

Diurnal pattern of climatic variables

The daily PPFD cycle was approximated by the method of
Anderson (1971) and was corrected by cloud cover according to
O'Rourke and Teijung (1981). The daily temperature cycle was
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Fig. 1. Flow chart showing the experimental design in this study.
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approximated by sinusoidal equation using daily maximum- and
minimum-values from a nearby meteorological station {(Suh
1992, Kim and Kim 1997).

Seasonal change of leaf area
The empirical equation between leaf area (LA, m?) and a
given day (t) for growing season in a given year was determined
by an logistic growth equation.
Kia

LA = 1+exp(c-rt)

(1)

where ¢ and r are the integration coefficient and the growth
coefficient of leaf area in a given year. Kia = 4409 m3m?, ¢ =
2.029; r = -0.0465.

Respiration of plant organs

The respiration rates of leaves (R) in mg CO, dm?h, stems
(Rs) in mg CO2'g'h* and roots and rhizomes (R)) in mg CO, g’
h.1 to temperature (T, °C) were approximated by exponential
equations (Fig. 2).

Ri=exp (-2.096 + 0.043 T) )]
(r=0.963)
Rs=exp(-2742+0.044 T7) (3)
{r=0.965)
R =exp(-3.765+0.055 T) ]
(r=0.974)
Net photosynthetic rate

The net photosynthetic rate P(Q, T) in mg CO, dm?h' at a
given PPFD (Q, mmol quanta m's™) and T (°C) can be calculat-
ed by Eq. (5), transforming the equation of Potvin et al. (1990).
The constant f was given as -2.958 by the regression equation
between net photosynthetic rate and PPFD at the optimum tem-
perature (Fig. 3):

P(Q, T)= Py {1 - exp(f - Q)}- R )

where Py is gross photosynthetic rate (mg CO, dm2h").

Assuming that Q is very large or under saturation we may
modify Eq. (5) to

Plo, )=Py-Ri=Py (6)

Under saturating PPFD the relation of photosynthetic rate (P,
mg CO; dm?h") to T was approximated by the quadratic func-
tion (Anderson 1982) (Fig. 3):

Px=-7.646+1.710 T-0.030 T2 7)

Hourly CO; exchanges were calculated as changes of hourly
environmental conditions and summed as daily and yearly
amounts.

In sensitivity analyses to investigate the change of certain
input data, net photosynthetic rate increases proportionally as
PPFD increase with canopy. As variable multiplication factor



Fig. 3. Net photosynthetic rate dependent upon temperature (a) and
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Fig. 2. Respiration rate of leaves (a), stems (b) and roots and rhi-
zomes (c) dependent upon temperature in P. communis.

increases from 0.5 to 2.0, net photosynthetic rate inhibited by
cloud cover decrease by as little as 10%. The sensitivity coeffi-
cients for gross photosynthetic rate and leaf area index con-
tributed linearly to increase of net photosynthetic rate.

Analysis of annual productivity and fluxes showed that yearly
gross population productivity, yearly population respiration and
yearly net population productivity were 33.4, 21.3 and 12.1 ton
CO; ha'yr", respectively (Table 1). The dry matter net popula-
tion productivity was 7.9 ton ha-'yr. The result was tested over
two stands, produced 75 - 96% predictions of 8.4 and 10.5 ton
ha'yr' of tested stands. The model showed the annual carbon
dioxide fluxes related to both above-ground and below-ground
production that increased with increasing annual temperature.
We observed that respiration of leaves and stems, as well as of

PPFD (b) in P. communis leaves.

CO, Budget (kg CO, ha’hr™)

Fig. 4. Annual trends in population respiration of leaves (R), stems
(Rs) and roots and rhizomes (R;), gross population productivity
(GPP) and net population productivity (NPP) of P. communis stands
in the year.
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Table 1. Annual carbon dioxide budgets in ton CO, hayr' of P.
communis population at the study site

Gross population productivity 334
Population respiration
Leaf 6.0
Stem 11.6
Root and rhizome 3.7
Subtotal 213
Net population productivity 121
DM productivity (0.65 of NPP) 79

rhizomes and roots, consume a considerable amount of photo-
synthetic production.

Aboveground biomass of P. communis stands studied by Kim
etal. (1972), Kim (1975), Kim et al. (1982), Kim et al. (1986), Min
and Kim (1983) and Oh and Ihm (1983) at various sites in Korea
was within a range from 4.1 ton/hr at Gunja which was flooded
with the sea water at coast to 64.4 ton/ha at Eulsugdo which was
flooded with brackish water at the estuary of the Nagdong river.
The dry matter net population productivity of 7.9 ton halyr! in
this study was consistent with that of Muan peninsula by Kim
(1975) and the Sumijin river estuary by Oh and lhm (1983), which
were located near this study site.

The model can be used to determine production potential
under given climatic conditions and could even be applied to
plant canopies with analogous biological characteristics. The
removal of dissolved inorganic compounds from domestic and
agricultural waste using aquatic plants, such as P. communis,
are of increasing demand. The concept behind waste-water
treatment plants using P. communis is to remove mainly nitro-
gen and phosphorous by harvesting the P. communis shoots
when they contain their maximum amounts of nutrients. The
model, with a further extension to the nutrient budget, has the
scope to predict this period, thus enabling it to be used as a
management too! to plan the harvesting season.
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