• Title/Summary/Keyword: Photolysis rate

Search Result 61, Processing Time 0.024 seconds

Photochemistry of $\alpha$-(o-Alkylphenyl)indanones

  • Jeong, Soo-Young;Park, Bong-Ser
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.35-37
    • /
    • 2000
  • Photolysis of $\alpha$-(o-alkylphenyl) indanones resulted in $\alpha$-cleavage followed by disproportionation to form E-and Z- ortho-formyl stilbenes. No evidences of hydrogen abstraction reactions were collected from these indanones. The minimum rate constant of $\alpha$-cleavage in the $\alpha$-(o-alkylphenyl) indanones was estimated to be 5.5$\times$10$^{10}$ s$^{-1}$ .

  • PDF

Time Resolved Electron Spin Resonance Spectroscopy of Anthrasemiquinone Radical Produced by Pulse Laser Photolysis. A Study on Chemically Induced Dynamic Electron Polarization (광화학 반응에서 생성된 Anthrasemiquinone Radical의 시간분해 ESR ; CIDEP에 관한 연구)

  • Hong Daeil;Kuwata Keiji
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.404-412
    • /
    • 1990
  • The time resolved electron spin resonance spectroscopy are used to two measurement methods of chemically induced dynamic electron polarization (CIDEP) and absorption ESR. The spectra of the semiquinone radical anion were successively detected in the laser flash photolysis of anthraquinone in the mixtures of 2-propanol and triethylamine. The semiquinone radical anion was fairly stable and its cw ESR could be observed. The rate constant (T1$^{-1}$) of the spin-depolarization of polarized semiquinone radical anion was 2.6 ${\times}\;1-^5$ sec$^{-1}$ and the decay of the radical anion was the first order with the rate constant (K$_1}$) of 300.0 sec$^{-1}$. The intensity of CIDEP spectra increased with the increasing the microwave power, but the Torrey wiggles appeared following with decay curves.

  • PDF

Photochemical Reductions of Benzil and Benzoin in the Presence of Triethylamine and TiO? Photocatalyst

  • Park, Joon-Woo;Kim, Eun-Kyung;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1229-1258
    • /
    • 2002
  • This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO2. Without TEA or TiO2, the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO2 increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO2 followed by protonation. In the reaction medium of 88 : 7 : 2 : 3 CH3CN/CH3OH/H2O/TEA with 2.5 $㎎/m{\ell}$ of TiO2, the yield of 2 was as high as 85 % at 50 % conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of $(\pm)$ and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO2-sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of ${\alpha}-cleavage$. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO2 by methanol, to produce 1,2-diphenylpropenone after dehydration reaction.

Photolytic Characteristics of Ni-TiO2 Composite Coating from Electroless Plating (무전해 Ni-TiO2 복합도금을 이용한 광분해 특성 연구)

  • Choi, Chul-Young;Han, Gil-Soo;Jo, Il-Guk;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.157-160
    • /
    • 2009
  • Many fundamental studies have been carried out regarding waste water and hazardous gas treatments technologies using the photolysis effect of $TiO_2$. However, a permanent use of $TiO_2$ particles immobilized using organic or organic-inorganic binders is impossible. In this study, Ni-$TiO_2$ composite coating was produced by electroless plating to trap $TiO_2$ particles in the Ni coating layer. The electroless plating was performed in the bath solutions with three different concentrations of $TiO_2$ particles : 10 g/l, 20 g/l, and 40 g/l. The surface and photolytic characteristics of the coating layer was investigated by the use of SEM, a scratch tester, and an UV-Visible spectrophotometer. The results showed that the amounts of immobilized $TiO_2$ particles and the photolytic rate of the coating increased with the initial content of $TiO_2$ particles in the electroless bath. In addition, the photolytic rate of the Ni-$TiO_2$ composite coating was remarkably promoted by etching process in 10% HCl solution.

Persistence and degradation of herbicide molinate in paddy-soil environment (논토양 환경 중 제초제 molinate의 잔류성과 분해특성)

  • Park, Byung-Jun;Park, Hyeon-Ju;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 2005
  • The herbicide molinate has been detected with high frequency in the main river during the growing season in Korea. To elucidate the exposure of molinate in agricultural environment, the persistence and the degradation characteristics of molinate were investigated in paddy ecosystems. The half-lives of molinate were 4.1 days with soil aquatic system, and 4.2 days in only aquatic system. Initial dissipation rate of molinate in water was greater with soil aquatic system than that of only aquatic system. Photolysis of molinate was occurred about 31.0% of molinate treated in pure water, when irradiated at 5,530 $J/cm^2$ by the xenon lamp, but its hydrolysis was stable. For the accelerated photolysis of molinate in aqueous solution, several photosensitizers were screened, showing that the hydroperoxide($H_2O_2$) and acetone were prominent among the chemical tested. When hydroperoxide and zinkoxide(ZnO) were used as photosensitizer, their photolysis were accelerated greater than 98% and 58% in aqueous solution, respectively. Elution rate of molinate as granular formulations in aqueous system was more than 90% in 30 hour at $35^{\circ}C$. Molinate concentration pattern in paddy water was rapidly decrease from treatment till 7 days in paddy rice field and its half-lives were 3.7 days($Y=1.9258{\times}e^{-0.1865X}$(r=-0.9402)).

Time Resolved ESR Studies on Short-Lived Reaction Intermediates Produced by Laser Photolysis of Anthraquinone in Organic Solvents (유기용매에서 Anthraquinone의 광반응에서 생성하는 짧은 수명의 반응중간체에 관한 시간분해 ESR 연구)

  • Hong, Daeil;Yun, Young Hyoun;Sohn, Moo-Jeong;Kim, Kyung-Chan;Kuwata, Keiji
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.4
    • /
    • pp.237-243
    • /
    • 1995
  • The measurments of neutral semiquinone radicals, which were formed from the laser flash photolysis of anthraquinone (AQ) in the mixed solvents were carried out by the time resolved electron spin resonance (trESR) spectroscopy. The chemically induced dynamic electron polarization (CIDEP) spectra of the neutral semiquinone radical (AQH${\cdot}$) and semiquinone radical anion (AQ${\cdot}$-) were successively detected in the laser flash photolysis of AQ in the mixtures of 2-propanol (PrOH) and triethylamine (TEA). The neutral semiquinone radical was short-lived with the half-life of 0.8 ${\mu}sec$, whereas the semiquinone radical anion was relatively stable and then its cwESR could be observed. The rate constant of the spin-depolarization of semiquinone radical anion was $2.6{\times}10^5 sec^{-1}$ and the decay of the radical anion was the first order reaction with the rate constant of $3.0{\times}10^2\; sec^{-1}$. No CIDEP of semiquinone radical anion was observed in the mixture of PrOH and the lower concentration of TEA than 2 percent. The CIDEP spectrum of the neutral semiquinone radical was detected in the mixture of benzene and TEA with the half-life of 3.0 ${\mu}sec$. The neutral semiquinone radical could not be detected by cwESR. Neither CIDEP nor ESR absorption could be observed in PrOH, TEA or benzene only.

  • PDF

CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical

  • Park, Ji-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.532-537
    • /
    • 2009
  • The tropospheric ozone production mechanism for the gas phase additive oxidation reaction of hydroxyl radical (OH) with isoprene (2-methyl-1,3-butadiene) has been studied using cavity ring-down spectroscopy (CRDS) at total pressure of 50 Torr and 298 K. The applicability of CRDS was confirmed by monitoring the shorter (~4%) ringdown time in the presence of hydroxyl radical than the ring-down time without the photolysis of hydrogen peroxide. The reaction rate constant, $(9.8{\pm}0.1){\times}10^{-11}molecule^{-1}cm^3s^{-1}$, for the addition of OH to isoprene is in good agreement with previous studies. In the presence of $O_2$ and NO, hydroxyl radical cycling has been monitored and the simulation using the recommended elementary reaction rate constants as the basis to OH cycling curve gives reasonable fit to the data.

A Study on Photolysis of Aromatic Diazonium Salt (방향족 디아조늄염의 광분해에 관한 연구)

  • 이형관
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.93-105
    • /
    • 1994
  • A new ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and examined by the experimental data of P.J Mangin et, al. for the relations of the maximum ink transfer rates to the printing pressure, the speed and the roughness of paper substrates. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the new model and the experimental data. It is concluded that the new model is very useful, and the free ink split coefficient and the immobilized ink are inversely propotional and propotional to the paper roughness respectively and both are saturated eventually under the critical values.

  • PDF

Surface and Photolytic Characteristics of Ni-TiO2 Composite Layer Electro-Plated from Non-Aqueous Electrolyte (비수용액 전해질에서 전기도금한 니켈-TiO2 복합 도금층의 표면 및 광분해 특성 연구)

  • Jo, Il-Guk;Ji, Chang-Wook;Choi, Chul-Young;Kim, Young-Seok;Kim, Yang-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.240-244
    • /
    • 2008
  • Composite plating is a method of co-deposition of plating layer with metallic and/or non-metallic particles to improve the plating layer properties such as high corrosion resistance and photolysis of organic compounds. The properties of nickel-ceramic composite plating are significantly depend on the surface characteristics of co-deposited particles as well as the quantity in electrolyte. In this study, Ni-$TiO_2$ composite coating layer was produced by electrodeposition technique from non-aqueous eletrolyte and its surface characteristics as well as photolytic properties were investigated. The amounts of immobilized $TiO_2$ particles increased with increasing the initial $TiO_2$ particles contents in the bath. Samples electroplated with the current density of $0.5\;A/dm^2$ showed the significantly improved homogeneous $TiO_2$ particles distribution. The corrosion resistance of Ni-$TiO_2$ composite coating layer also improved with increaing the amounts of $TiO_2$ particles. Etched sample showed about 10% increased photolytic rate of organic matter compare to that of the non-etched.

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries (고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구)

  • Cha, E.H.;Kim, Y.W.;Lim, S.A.;Lim, J.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.