• Title/Summary/Keyword: Photolysis rate

Search Result 61, Processing Time 0.029 seconds

Depletion Kinetics of the Ground State CrO Generated from the Reaction of Unsaturated Cr(CO)x with O2 and N2O

  • Son, H.S.;Ku, J.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.184-188
    • /
    • 2002
  • Unsaturated $Cr(CO)_x(1{\leq}x{\leq}5)$molecules were generated in the gas phase from photolysis of $Cr(CO)_6$vapor in He using an unfocussed weak UV laser pulse and their reactions with $O_2$ and $N_2O$ have been studied. The formation and disappearance of the ground state CrO molecules were identified by monitoring laser-induced fluorescence(LIF) intensities vs delay time between the photolysis and probe pulses. The photolysis laser power dependence as well as the delay time dependence of LIF intensities from the CrO orange system showed different behavior as those from ground state Cr atoms, suggesting that the ground state CrO molecules were generated from the reaction between $O_2/N_2O$ and photo-fragments of $Cr(CO)_6$ by one photon absorption. The depletion rate constants for the ground state CrO by $O_2$ and $N_2O$ are $5.4{\pm}0.2{\times}10^{-11}$ and $6.5{\pm}0.4{\times}10^{-12}cm^3molecule^{-1}s^{-1}$, respectively.

Effects of NaOH and Humic Acid on the UV Photolysis of PCBs (PCBs의 광화학적 연구: NaOH 및 휴믹산 (humic acid, HA)에 의한 분해특성)

  • Shin, Hae Seung;Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.147-156
    • /
    • 2014
  • Objectives: This study was carried out to examine whether the apparent photolysis with or without sensitizers [NaOH and humic acid (HA)] was prompted photodegradation of polychlorinated biphenyl (PCB) in aqueous solution. Methods: PCBs photodegradation occurred using fluorescence black lamps at ${\lambda}_{max}=300nm$. PCB congeners were exposed in 10 ppm HA or 0.05N NaOH solutions, to investigate the decreasing profile of PCB concentration with time. The PCBs were then analyzed by gas chromatography/mass spectrometry (GC-MS). Reductive degradation profile of PCB congeners in the presence of both sensitizers under oxygen-saturated protic conditions was described using the wind-rose diagrams. Results: Use of HA or NaOH decreased PCB concentration with time in the dark and on irradiation, indicating that photolysis underwent through reductive dechlorination through energy transfer and possibly with reactive oxygens. The dechlorination was marked by a chromatographic shift, observed in the GC-MS plots. Therefore it is logical to assume that increasing the dose of sensitizers would increase the photodegradation rates of PCBs. The half-lives of pentachloro-PCB (penta-3) in 0.05N NaOH and 10 ppm HA were estimated at about 47 hours and 39 hours, respectively, under the same experimental conditions of photolysis. It was found that the rate of photolysis of pentachloro-PCB in aqueous solution followed apparent first-order kinetics compared to other congeners. Conclusion: Photochemical degradation (using 328 nm UV light) of penta- and hexa-PCBs in HA or alkaline solution is a viable method for pretreatment method. The results are helpful for the further comprehension of the reaction mechanism for photolytic dechlorination of PCBs in aquatic system.

Removal of Sulfamethoxazole using Ozonation or UV Radiation; Kinetic Study and Effect of pH (오존 처리 및 UV 조사를 이용한 Sulfamethoxazole 제거; 동역학적 고찰 및 pH 영향)

  • Jung, Yeonjung;Kim, Wangi;Jang, Hayoung;Choi, Yanghwun;Oh, Byungsoo;Kang, Joonwun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This study was performed to assess the potential use of ozone or UV radiation for the treatment of water contaminated with sulfamethoxazole (SMX), which is frequently used antibiotic in human and veterinary medicines, especially focusing on the kinetic study and effect of pH. In a study using ozone alone, kinetic study was performed to determine second-order rate constant ($k_{O3,SMX}$) for the reactions of SMX with ozone, which was found to be $1.9{\times}10^6M^{-1}s^{-1}$ at pH 7. The removal efficiencies of SMX by ozone were decreased with increase of pH due to rapid decomposition of ozone under the condition of various pH (2.5, 5.3, 7, 8, 10). In a UV irradiation study at 254 nm, a kinetic model for direct photolysis of SMX was developed with determination of quantum yield ($0.08mol\;Einstein^{-1}$) and molar extinction coefficient ($15,872M^{-1}cm^{-1}$) values under the condition of quantum shielding due to the presence of reaction by-products formed during photolysis. For effect of pH on photolysis of SMX, SMX in the anionic state ($S^-$, pH > 5.6), most prevalent form at environmentally relevant pH values, degraded more slowly than in the neutral state (SH, 1.85 < pH < 5.6) by UV radiation at 254 nm.

KINETICS OF ATRAZINE OXIDATION BY UV RADIATION AND OXALATE ASSISTED H2O2/UV PROCESSES

  • Choi, Hyun-Jin;Choi, Jong-Duck;Kim, Hyun-Kab;Lee, Tae-Jin
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • The degradation of atrazine was explored using UV alone, $H_2O_2/UV$, oxalate/UV and oxalate-assisted $H_2O_2/UV$. The addition of oxalate to the $H_2O_2/UV$ (oxalate-assisted $H_2O_2/UV$) process was the most effective method for the degradation of atrazine. The overall kinetic rate constant was split into the direct oxidation due to photolysis and that by the radicals from hydrogen peroxide or oxalate. In semi-empirical terms, the initial concentration of hydrogen peroxide had a greater contribution than that of oxalate for atrazine oxidation.

Reaction of Triethylsilyl Radical with Sulfides, a Laser Flash Photolysis Study

  • Platz, M. S.;Lee, Woo-Bung
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.422-426
    • /
    • 1989
  • Triethylsilyl radical was generated by laser flash photolysis of a 1:1 (v/v)solution of triethylsliance and di-tert-butyl peroxide. The silicon centered radical was reacted with sulfides to give carbon centered radicals by displacement at sulfar. The carbon radicals were readily detected by their transient absorption spectra. The absolute rate of reaction of triethylsilyl radical with 9-fluorenylphenylsulfide, di-n-butylsulfide, di-sec-butyl, di-tert-butyl sulfide and di-n-butyl disulfide are $2.40{\pm}0.12{\times}10^8M^{-1}s^{-1}$, $11.21{\pm}0.89{\times}10^6M^{-1}s^{-1}$, $8.79{\pm}0.73{\times}10^6M^{-1}s^{-1}$, $3.29{\pm}0.18{\times}10^6M^{-1}s^{-1}$, and $3.41{\pm}0.09{\times}10^8M^{-1}s^{-1}$, respectively.

Design and Performance Evaluation of the KIST Indoor Smog Chamber (실내 스모그 챔버의 설계 및 성능평가)

  • 배귀남;김민철;이승복;송기범;진현철;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.437-449
    • /
    • 2003
  • A multi-functional indoor smog chamber was designed and evaluated to investigate photochemical or water vapor reaction mechanisms of air pollutants. Various smog chamber experiments could be conducted using ambient air or purified air in this smog chamber. The smog chamber consisted of a housing, a Teflon bag, blacklights, injection ports, sampling ports, and utility facilities. The characteristics of light source, the wall losses of air pollutants, and the quality of purified air were experimentally investigated. The maximum NO$_2$ photolysis rate was 1.10 min$^{-1}$ . In a 2.5-m$^3$ Teflon bag, the wall losses of ambient $O_3$, NO, and NO$_2$ were 1.2~2.4$\times$10$^{-3}$ min$^{-1}$ , 0.7~2.0$\times$10$^{-3}$ min$^{-1}$ , and 0.4~2.0$\times$10$^{-3}$ min$^{-1}$ , respectively. The wall loss of ambient particles ranging 0.05 to 0.2 ${\mu}{\textrm}{m}$ was 1.8~5.4$\times$10$^{-3}$ min$^{-1}$ , which was slightly higher than those of ambient gaseous species. The purified air supply system provided high quality of air with NO$_{x}$ < 1 ppb, and total hydrocarbons < 5 ppb.b.

The Effect of UV Intensity and Wavelength on the Photolysis of Triclosan (TCS) (광반응을 이용한 Triclosan 분해에서의 UV 광세기와 파장의 효과)

  • Son, Hyun-Seok;Choi, Seok-Bong;Khan, Eakalak;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.1006-1015
    • /
    • 2005
  • We investigated the effect of hydroxyl radicals on the photolysis of triclosan (TCS), which is a potent broad-spectrum antimicrobial agent. TCS degradation during the initial reaction time of 5 min followed a pseudo-first order kinetic model ai all light intensities at a wavelength of 365 nm and at the low light intensities at a wavelength of 254 nm. The photodegradation rate significantly increased with decreasing wavelength and increasing the UV intensities. The activity of hydroxyl radicals was suppressed when methanol was used as the solvent instead of water. An increase in the photon effect was observed when the UV intensity was higher than $5.77{\times}10^{-5}$ einstein $L^{-1}min^{-1}$ at 254 nm, and lower than $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. The quantum yield efficiency for the photolysis of TCS was higher at 365 nm than at 254 nm among the above mentioned UV intensities. Dibenzodichloro-p-dioxin (DCDD) and dibenzo-p-dioxin were detected as intermediates at both UV intensities of $1.37{\times}10^{-4}$ and $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. Dichlorophenol and phenol were also detected in all cases. Based on our findings, we presented a possible mechanism of TCS photolysis.

Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis (과산화수소 광분해를 이용한 선박 배가스 내 NO 산화흡수에 관한 연구)

  • Lee, Jae-Hwa;Kim, Bong-Jun;Jeon, Soo-Bin;Cho, Joon-Hyung;Kang, Min-Kyoung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • Air pollution associated with the $NO_x$ emission from the ship engines is becoming one of the major environmental concerns these days. As the regulations on ship pollutants are strengthened, the wet absorption method, for controlling complex pollutants in a confined space, has the advantage of simultaneously removing various pollutants, but the low solubility of nitrogen monoxide is drawback. In this study, for improving existing denitrification scrubber system, NO oxidation process by hydroxyl radical produced from irradiating UV light on $H_2O_2$ is suggested and the $H_2O_2$ decomposition rates and hydroxyl radical quantum yields were measured to find the optimum condition of $H_2O_2$ photolysis reaction. As a result, the optimum quantum yield and photolysis rate of $H_2O_2$ were 0.8798, $0.6mol\;h^{-1}$ at 8 W, 2 M condition, and oxidation efficiency of 1000 ppm NO gas was 40%. In batch system, NO removal efficiency has a range of 65.0 ~ 67.3% according to input gas concentration of 100 ~ 1500 ppm. This results indicate that the scrubber system using hydrogen peroxide photolysis can be applied as air pollution prevention facility of ship engines.

Depletion Kinetics of Ground State FeO Molecules by $O_2, N_2O, and \;N_2$

  • Son, H. S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.583-587
    • /
    • 2000
  • Depletion kinetics of ground state FeO molecules by $0_2$, $N_2O$ and $N_2$ has been studied at room temperature. The ground state FeO molecules were generated by photolysis of a $Fe$(CO)_5$/M(O_2$, $N_2O)/He$ mixture using an unfocused weak UV laser beam. The formation of ground state FeO molecules was identified by a laser-induced fluorescence (LIF) method. The intensity distribution of those undisturbed rotational lines suggests that the rotational temperature of the ground state FeO molecules is lower than room temperature. The LIF intensities of FeO molecules at different partial pressures of $0_2$, $N_2O$ and $N_2$ were monitored as a function of the time delay between the photolysis and probe laser pulses to obtain the depletion rate constants for the ground state FeO. They were 1.7+ 0.2x $10^{-12}$, 4.8 $\pm0.4$ x $10^{-12}$, and $1.4\pm$ 0.2x $10^{-12}cm^3$molecule^{-1}s^{-1}$$ by $0_2$, $N_20$, and $N_2$, respectively.

Effect of the Photolysis rate and Initial concentration for the Pollutants on modelled Ozone concentration (반응속도상수와 오염물질의 초기 농도가 오존농도 예측에 미치는 영향)

  • 이화운;김유근;원경미;김희정
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.422-423
    • /
    • 1999
  • 최근 저유황 연료유의 공급과 청정연료의 사용 등으로 인해 1차 오염물질은 점차 줄어드는 추세에 있는 반면, 늘어나는 자동차와 급속한 산업화로 산업시설에서 배출되는 질소산화물과 탄화수소류, 휘발성 유기화합물(VOC) 등이 복잡한 광화학 반응을 통해 2차 오염물질을 생성함으로 대기오염의 문제가 심각하다.(중략)

  • PDF