• Title/Summary/Keyword: Photoenergy

Search Result 6, Processing Time 0.023 seconds

Single Nanoparticle Photoluminescence Studies of Visible Light-Sensitive TiO2 and ZnO Nanostructures

  • Yoon, Minjoong
    • Rapid Communication in Photoscience
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Visible light-sensitive $TiO_2$ and ZnO nanostructure materials have attracted great attention as the promising material for solar energy conversion systems such as photocatalysts for water splitting and environmental purification as well as nano-biosensors. Success of their applications relies on how to control their surface state behaviors related to the exciton dynamics and optoelectronic properties. In this paper, we briefly review some recent works on single nanoparticle photoluminescence (PL) technique and its application to observation of their surface state behaviors which are raveled by the conventional ensemble-averaged spectroscopic techniques. This review provides an opportunity to understand the temporal and spatial heterogeneities within an individual nanostructure, allowing for the potential use of single-nanoparticle approaches in studies of their photoenergy conversion and nano-scale optical biosensing.

Photocatalytic oxidation reaction in removal of NH4-N by using TiO2 (TiO2를 이용한 암모니아성 질소 제거에 관한 광촉매 산화반응)

  • 박상원;김정배
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1071-1077
    • /
    • 2003
  • The aim of this study is, firstly, to find out what kinds of inorganic species are produced in the photocatalytic oxidation of ammonium-nitrogen containing water and, secondly, to seek the influence of anion for the photocatalytic oxidation of ammonium contained compounds. The photoenergy above 3 eV(λ <415 nm) was effectively absorbed by TiO$_2$ and TiO$_2$/polymer was used to be oxidized NH$_4$-N in wastewater to NO$_3$-N. Existing the anion as Cl$\^$-/, the rate of photocatalytic oxidation decreased regardless of other condition. This result showed that the chloride ions reduced the rate of oxidation by scavenging oxidizing radical species as OH$\^$-/ and OCl$\^$-/. Some of the added ion might have blocked the active sites of the catalyst surface, thus deactivated the catalyst.

Photocatalytic Decomposition of Gaseous Ozone over $TiO_2$Thin Film

  • Cho, Ki-Chul;Hwang, Kyung-Chul;Yeo, Hyun-Gu;Taizo Sano;Koji Takeuchi;Sadao Matsuzawa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.121-127
    • /
    • 2003
  • The characteristics of heterogeneous photocatalytic decomposition were investigated at low concentration level of $O_3$on TiO$_2$for various operating parameters such as: loaded catalyst weight (0∼4 mg/$\textrm{cm}^2$), initial concentration of $O_3$(0.06∼10.0 ppm), gas flow rate (1.0 ∼ 2.5ι/min), and relative humidity (0∼80%). This study was conducted using a flow-type reactor at room temperature. Three kinds of pure TiO$_2$(P25, ST -01, and E- 23) were employed as photocatalyts. It was found that $O_3$removal ratio was identical, regardless of the loaded TiO$_2$weight in the range from 0.5 to 4.0 mg/$\textrm{cm}^2$. It was also found that higher initial ozone concentration results in greater oxidation rate of ozone and experimental data show kinetically a good agreement with Langmur-Hinshelwood kinetic model. We also observed that the removal ratio of $O_3$increases linearly with the increasing flow rate and also with the increasing relative humidity for each catalyst.

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.

Photochemical properties of a Rhodopsin for Light Energy Conversion obtained from Yellow Sea in Korea

  • Kim, So Young;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.52-55
    • /
    • 2013
  • Proteorhodopsin (PR) is a photoinduced proton pump found abundantly in ocean and fresh water habitat, and has an important role in photoenergy conversion to bioenergy in the living cells. Numerous sequences that encode PR protein variants were discovered by environmental genome sequencing and they indicated the high sequence similarity. A new-type of PR (YS-PR) which had been discovered from the surface of Yellow Sea was found to have only 5 amino acid differences from the previously known green-light absorbing PR (GPR) protein, but showed different photochemical properties. This YS-PR showed a 10 nm red-shifted absorption maximum, when compared with GPR. It also showed slower photocycling rate than GPR. However, the photoconversion rate of YS-PR was fast enough to pump protons. Four different amino acids out of 5 were similar to Blue-light absorbing PR (BPR), suggesting that those residues might be responsible for the observed spectral and photoconverting properties.

Electrochemical Dopamine Sensors Based on Graphene

  • Rahman, Md. Mahbubur;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.185-195
    • /
    • 2019
  • The large surface area and the high electrical conductivity of graphene (GP) allow it to act as an "electron wire" between the redox center of biomolecules and an electrode surface. The faster electron transfer kinetics and excellent catalytic activity of GP facilitate the accurate and selective electrochemical detection of biomolecules. This mini-review provides an overview of the recent developments and progress of GP, functionalized or doped GP, and GP-composites based sensors for the selective and interference-free detection of dopamine (DA). The electrochemical principles and future perspective and challenges of DA sensors were also discussed based on GP.