• Title/Summary/Keyword: Photoelectron spectroscopy

Search Result 1,451, Processing Time 0.03 seconds

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

Surface Modification of Polymethylmethacrylate(PMMA) by Ion-assisted reaction (이온 보조 반응법(Ion-assisted-reaction)을 이용한 Polymethylmethacrylate (PMMA)의 표면개질)

  • Jung, Sun;Cho, Jun-Sik;Choi, Sung-Chang;Koh, Seok-Keun
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.446-451
    • /
    • 1999
  • Surface of Polymethylmethacrylate (PMMA) was modified by ion assisted reaction in which ion beam of Ar or$ O_2$is irradiated on polymer in reaction gas environment. Ion beam energy was changed from 600 to 1000eV, and ion doses were varied from $5\times10^{14} ions/cm^2 to 1\times10^{17} ions/cm^2$. Contact angle and surface energy of modified PMMA were measured by contact angle micrometer using distilled water and formamide. In the case of $Ar^+$ ion irradiation only, the contact angle reduced from $68^{\circ} to $35^{\circ}$ and the surface energy was changed from 46 dyne/cm to 60 dyne/cm. The contact angle significantly decreased to $14^{\circ}$and the surface energy increased to 72 dyne/cm when the surface of PMMA was modified by oxygen ion irradiation in oxygen gas environment. Improvement of wettability results from the formation of new hydrophilic group which is identified as C-O chain by XPS analysis. Recovery of wettability in dry air and maintenance of it in water condition were explained in view of the formation of hydrophilic group.

  • PDF

Electrochemical Behaviors of Platinum Catalysts Deposited on the Plasma Treated Carbon Blacks Supports (플라즈마 처리된 카본블랙 담지체에 담지된 백금 촉매의 전기화학적 거동)

  • Kim, Seok;Cho, Mi-Hwa;Lee, Jae-Rock;Ryu, Ho-Jin;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.756-760
    • /
    • 2005
  • In this study, the effect of $N_2$-plasma treatment on carbon blacks (CBs) was investigated by analyzing acid-base surface values and surface functional groups of CBs. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR) spectrometer, X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. Electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by cyclic voltammetry (CV) experiments. From the results of FT-IR and acid-base values, $N_2$-plasma treatment at 300 W intensity on the CBs led to the formation of the free radical. The peak intensity was increased with increasing the treatment time due to the formation of new basic functional groups(such as C-N, C=N, $-NH_3{^+}$, -NH, and =NH) by the free radical. Accordingly, the basic values were increased by the basic functional groups. However, after a specific reaction time, $N_2$-plasma treatment could hardly influence change of surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 second for electro activity of Pt/CBs catalysts.

Oxidative Desulfurization of Marine Diesel Using WOx/SBA-15 Catalyst and Hydrogen Peroxide (WOx/SBA-15 촉매와 과산화수소를 이용한 선박용 경유의 산화 탈황 연구)

  • Oh, Hyeonwoo;Kim, Ji Man;Huh, Kwang-Sun;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • In this work, tungsten oxide ($WO_x$) supported on SBA-15 (mesoporous silica) were prepared and applied for oxidative desulfurization of sulfur compounds in marine diesel containing about 230 ppmw of sulfur concentration. Prepared catalysts were examined by two steps; at first step, oxidation reaction carried out with hydrogen peroxide as oxidant and then the oxidized sulfur compounds were extracted by acetonitrile as solvent. Catalysts were characterized by using X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and $N_2$ adsorption-desorption isotherms. Tungsten oxide exists as monoclinic crystal system on SBA-15 and over about 10 wt% of the $WO_x$ loading took the form of multi-layers on SBA-15. The 13 wt% $WO_x$/SBA-15 catalyst exhibite highest activity, achieving about 76.3% sulfur removal in the reaction conditions, such as catalyst amount of 0.1 g, reaction temperature at $90^{\circ}C$, reaction time for 3 h and O/S molar ratio of 10. One time oxidation reaction is enough oxidize the sulfur compounds in marine diesel completely. The repetition experiment of extraction process indicated that sulfur removal could reach 94.4% after 5 times.

The Evaluation of the atomic composition and the surface roughness of Titanium Implants following Various Laser treatment with air-powder abrasive (레이저 처리후 임프란트 표면 변화에 관한 연구)

  • Kim, Tae-Jung;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.615-630
    • /
    • 2002
  • Various long-term studies have shown that titanium implants as abutments for different types of prostheses have become a predictable adjunct in the treatment of partially or fully edentulous patients. The continuous exposure of dental implants to the oral cavity with all its possible contaminants creates a problem. A lack of attachment, together with or caused by bacterial insult, may lead to peri-implantitis and eventual implant failure. Removal of plaque and calculus deposits from dental titanium implants with procedures and instruments originally made for cleaning natural teeth or roots may cause major alterations of the delicate titanium oxide layer. Therefore, the ultimate goal of a cleaning procedure should be to remove the contaminants and restore the elemental composition of the surface oxide without changing the surface topography and harming the surrounding tissues. Among many chemical and mechanical procedure, air-powder abrasive have been known to be most effective for cleaning and detoxification of implant surface. Most of published studies show that the dental laser may be useful in the treatment of pen-implantitis. $CO_2$ laser and Soft Diode laser were reported to kill bacteria of implant surface. The purpose of this study was to obtain clinical guide by application these laser to implant surface by means of Non-contact Surface profilometer and X-ray photoelectron spectroscopy(XPS) with respect to surface roughness and atomic composition. Experimental rough pure titanium cylinder models were fabricated. All of them was air-powder abraded for 1 minute and they were named control group. And then, the $CO_2$ laser treatment under dry, hydrogen peroxide and wet condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of the control models. The results were as follows: 1. Mean Surface roughness(Ra) of all experimental group was decreased than that of control group. But it wasn't statistically significant. 2. XPS analysis showed that in the all experimental group, titanium level were decreased, when compared with control group. 3. XPS analysis showed that the level of oxygen in the experimental group 1, 3($CO_2$ laser treatment under dry and wet condition) and 4(Soft Diode laser was used under toluidine blue O solution) were decreased, when compared with control group. 4. XPS analysis showed that the atomic composition of experimental group 2($CO_2$ laser treatment under hydrogen peroxide) was to be closest to that of control group than the other experimental group. From the result of this study, this may be concluded. Following air-powder abrasive treatment, the $CO_2$ laser in safe d-pulse mode and the Soft Diode laser used with photosensitizer would not change rough titanium surface roughness. Especially, $CO_2$ laser treatment under hydrogen peroxide gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

Remote Plasma Enhanced-Ultrahigh Vacuum Chemical Vappor Deposition (RPE-UHVCD)법을 이용한 GaN의 저온 성장에 관한 연구

  • 김정국;김동준;박성주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.108-108
    • /
    • 1998
  • 최근의 GaN에 관한 연구는 주로 MOCVD법과 MBE법이 이용되고 있으며 대부분 800¬1$\alpha$)()t 정도의 고옹에서 이루어지고 었다. 그러나 이러한 고온 성장은 GaN 성장 과청에서 질 소 vacancy를 생성시켜 광특성을 저하시키고 청색 발광충인 InGaN 화합물에 In의 유입울 어 렵게 하며 저온에서보다 탄소 오염이 증가하는 동의 문제캠을 가지고 있다. 이러한 고온 생장 의 문제점을 해결하기 위한 방법중의 한 가지로 제시되고 있는 것이 저온 성장법이다. 본 연구 에 사용된 RPE-UHVCVD법은 Nz률 rf plasma로 $\sigma$acking하여 공급함으로써 NI-h롤 질소원으 로 사용하는 고온 성장의 청우와는 다르게 온도에 크게 의존하지 고 질소원올 공급할 수 있 어 저옹 성장이 가능하였다. 기판으로는 a - Alz03($\alpha$)()1)를 사용하였고 3족원은 TEGa(triethylgallium)이며,5족원으로는 6 6-nine Nz gas를 rf plasma로 cracking하여 활성 질소원올 공급하였다 .. Nz plasma로 질화처리 를 한 sapphire 표면 위에 G따애 핵생성충을 성장 옹도(350 t, 375 t, 400 t)와 성장시간(30 분,50 분) 그리고 VIllI비(1$\alpha$)(), 2뼈)둥을 변화시키면서 성장시킨 후 GaN 에피택시충을 450 $^{\circ}C$에서 120 분 동안 성장시켰다 .. XPS(x-ray photoelectron spectroscopy), XRD(x-ray d diffraction), AFM(atomic force microscope)둥올 이용하여 표면의 조성 및 morphology 변화와 결정성을 관찰하였다. X XPS 분석 결과 질화처리를 한 sapphire 표면에는 AlN가 형성되었다는 것을 확인 할 수 있 었으며 질화처리를 한 후 G따J 핵생성충올 성장시킨 경우에 morphology 변화를 AFM으로 살 펴본 결과 표면에 facet shape의 island가 형성되었고 이러한 결파는 질화처리 과청이 facet s shape의 island 형성을 촉진시킨다는 것을 알 수 있었다. 핵생성충의 성장온도가 중가함에 따 라 island의 모양은 round shape에서 facet shape으로 변화하였다. 이러한 표면의 morphology 변화와 GaN 에피택시충의 결정성과의 관계를 살펴보면 GaN 에피택시충 표면의 rms(root m mean square) roughness가 중가하는 경 우 XRD (j -rocking curve의 FWHM(full width half m maximum) 값이 감소하는 것으로 나타났다. 이러한 현상은 결정성의 향상이 columnar 성장과 관계가 었다는 것올 알 수 있었다 .. columnar 성장은 결함의 밀도가 낮은 column의 형생과 G GaN 에피택시충의 웅력 제거로 인해 G값{의 결정성을 향상시킬 수 있는 것으로 생각된다. 톡 히 고온 성장의 경우와는 달리 rms roughness의 중가가 100-150 A청도로 명탄한 표면올 유 지하면서 결정성을 향상시킬 수 있었다. 본 실험에서는 핵생성충올 375 t에서 30 분 생장시킨 경우에 hexagonal 모양의 island로 columnar 성장을 하였고 GaN 에피태시충의 결정성도 가장 향상되었다 이상의 결과로부터 RPE-UHVCVD법용 이용한 GaN 저온 성장에서도 GaN의 결청성올 향 상시킬 수 있음융 확인할 수 있었다.

  • PDF

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

Corrosion Stability of Iron Artifacts after Treating with Water Treatment (수처리제를 사용한 철제유물의 부식 안정성 연구)

  • Jeong, Ji Hae
    • Journal of Conservation Science
    • /
    • v.33 no.5
    • /
    • pp.381-390
    • /
    • 2017
  • Desalination is the main focus of the stabilization of iron artifacts. However, drawbacks such as re-corrosion are noted due to the uncertainty in the elimination of the corrosive factors and artifacts. Several studies have been carried out on the effects of corrosion inhibitors to overcome these shortcomings. In this study, the effects of type 3 water treatment on corrosion inhibitors were investigated. Surfaces of samples that contained film corrosion inhibitors on their surfaces were analyzed. The results revealed that the surface rust was removed from the sample of type 1 No. 2 that was mainly composed of phosphate. The average weight reduction rates of re-corrosion samples were 0.58, 0.03, and 0.07% for type 1 No. 2, type 2 No. 2, and type 3 No. 2 respectively. The changes in the $Cl^-$ ion, a corrosive agent were found to be 28.60, -4.08, and -1.94 ppm for type 1 No. 2, type 2 No. 2, and type 3 No. 2 respectively. The water-treated films were analyzed by X-ray photoelectron spectroscopy (XPS). It was found that type 2 No. 2 had less Fe the basis metal, than that in type 3 No. 2 indicating much better film. Moreover, Si content was higher in type 2 No. 2, based on the silicate content, than in type 3 No. 2. They are speculated to be the reason or the formation of a better film. Type 1 No. 2, which is mainly composed of phosphate, would be inappropriate as a metal artifact conservation treatment. It was determined that type 2 No. 2 and type 3 No. 2 water treatments, which are mainly composed of silicate, provided excellent corrosion inhibiting effects. Corrosion inhibitors could be used as emergency treatment agents during the excavation of iron artifacts.

A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites (구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구)

  • Hong, Myung-Sun;Bae, Kyong-Min;Choi, Woong-Ki;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • In this work, the electroplating of copper was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and contact angle measurements. Its mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). From the results, it was found that the mechanical interfacial properties of Cu-plated carbon fibers-reinforced composites (Cu-CFRPs) enhanced with increasing the Cu plating time, Cu content and COOH group up to Cu-CFRP-30. However, the mechanical interfacial properties of the Cu-CFRPs decreased dramatically in the excessively Cu-plated CFRPs sample. In conclusion, the presence of Cu particles on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the Cu-CFRPs, but the excessive Cu content can lead the failure due to the interfacial separation between fibers and matrices in this system.

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.