Electrochemical Behaviors of Platinum Catalysts Deposited on the Plasma Treated Carbon Blacks Supports

플라즈마 처리된 카본블랙 담지체에 담지된 백금 촉매의 전기화학적 거동

  • Kim, Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Cho, Mi-Hwa (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Jae-Rock (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Ryu, Ho-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 김석 (한국화학연구원 화학소재연구부) ;
  • 조미화 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 류호진 (한국화학연구원 화학소재연구부) ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Received : 2005.06.27
  • Accepted : 2005.10.06
  • Published : 2005.12.31

Abstract

In this study, the effect of $N_2$-plasma treatment on carbon blacks (CBs) was investigated by analyzing acid-base surface values and surface functional groups of CBs. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR) spectrometer, X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. Electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by cyclic voltammetry (CV) experiments. From the results of FT-IR and acid-base values, $N_2$-plasma treatment at 300 W intensity on the CBs led to the formation of the free radical. The peak intensity was increased with increasing the treatment time due to the formation of new basic functional groups(such as C-N, C=N, $-NH_3{^+}$, -NH, and =NH) by the free radical. Accordingly, the basic values were increased by the basic functional groups. However, after a specific reaction time, $N_2$-plasma treatment could hardly influence change of surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 second for electro activity of Pt/CBs catalysts.

본 연구에서는 카본블랙을 $N_2$-플라즈마 처리하여 표면 관능기를 변화시킨 후 백금을 담지시켜 전기화학적 활성을 향상시키는 방법에 대하여 고찰하였다. $N_2$-플라즈마 처리된 카본블랙의 표면특성은 FT-IR, XPS 그리고 산-염기도 측정법 등으로 분석하였으며, 전기화학적 특성을 알아보기 위하여 순환전류전압곡선(CV)를 측정하였다. FT-IR과 산-염기도 결과에 의하면 카본블랙을 300 W의 일정한 세기로 $N_2$-플라즈마 처리함으로써, 카본블랙 표면에 생성된 자유라디칼에 의해 새로운 염기성 관능기가 형성되어 처리시간이 증가할수록 염기도가 증가함을 알 수 있었다. C-N, C=N, $-NH_3{^+}$, -NH 그리고 =NH 등과 같은 새로운 염기성 관능기에 의해 염기도 값이 증가하였으나, 일정 반응시간 이후에는 카본블랙 표면에 도입한 약한 결합을 이루는 관능기가 파괴되어 새로운 관능기를 형성하지 못하고 아무런 영향을 미치지 못하는 것으로 판단된다. 결과적으로, 백금/카본블랙 촉매의 전기화학적 활성은 300 W의 세기로 처리하였을 때 최적의 표면처리 시간은 30초이다.

Keywords

References

  1. Horng, R F., 'Transient Behaviour of a Small Methanol Reformer for Fuel Cell during Hydrogen Production after Cold Start,' Energy Conv. Manag., 46(7), 1193-1207(2005) https://doi.org/10.1016/j.enconman.2004.06.018
  2. Okawa, Y. and Hirata, Y., 'Sinterability, Microstructures and Electrical Properties of Ni/Sm-doped Ceria Cermet Processed with Nanometer-sized Particles,' J. European Ceram. Soc., 25(4), 473-480(2005) https://doi.org/10.1016/j.jeurceramsoc.2004.01.011
  3. Kwak, C., Park, T. J. and Sub, D. J., 'Preferential Oxidation of Carbon Monoxide in Hydrogen-rich Gas over Platinum-cobaltalumina Aerogel Catalysts,' Chem. Eng. Sci., 60(5),1211-1217(2005) https://doi.org/10.1016/j.ces.2004.07.126
  4. Kuk, S. T. and Wieckowski, A, 'Methanol Electrooxidation on Platinum Spontaneously Deposited on Unsupported and Carbon-supported Ruthenium Nanoparticles' J. Power Sources, 141(1), 1-7(2005) https://doi.org/10.1016/j.jpowsour.2004.08.050
  5. Chen, C. Y., Yang, P., Lee, Y. S. and Lin, K. F., 'Fabrication of Electrocatalyst Layers for Direct Methanol Fuel Cells,' J. Power Sources, 141(1), 24-29(2005) https://doi.org/10.1016/j.jpowsour.2004.09.011
  6. Kim, T., Takahashi, M., Nagai, M. and Kobayashi, K., 'Preparation and Characterization of Carbon Supported Pt and PtRu Alloy Catalysts Reduced by Alcohol for Polymer Electrolyte Fuel Cell,' Electrochim. Acta, 50(2), 813-817(2004)
  7. Zhou, W. J., Song, S. Q., Li, W. Z., Sun, G Q., Xin, Q., Kontou, S., Poulianitis, K. and Tsiakaras, 'Pt-based Anode Catalysts for Direct Ethanol Fuel CellS,' Solid State Ion., 175(1),797-803(2004) https://doi.org/10.1016/j.ssi.2004.09.055
  8. Fritts, S. D. and Gopal, R., 'Report of the Electrolytic Industries for the Year 1992,' J. electrachem. Soc., 140(11),3337-3341(1993) https://doi.org/10.1149/1.2221033
  9. Statti, P., Poltarzewski, Z., Alderucci, V., Maggio, G and Giordano, N., 'Solid Polymer Electrolyte Fuel Cell(SPEFC) Research and Development at the Institute CNR - TAE of Messina,' Int. J. Hydrogen Energy, 19(6), 523-527(1994) https://doi.org/10.1016/0360-3199(94)90007-8
  10. Appleby, A. J., 'Fuel Cell Technology and Innovation,' J. Power Sources, 37(2), 223-239(1992) https://doi.org/10.1016/0378-7753(92)80080-U
  11. Park, S. J., Jung, H. J. and Na, C. H., 'Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution,' Polymer(Korea), 27(1), 46-51(2003)
  12. Lin, C. W., Thangamuthu, R. and Yang, C. J., 'Proton-conducting Membranes with High Selectivity from Phosphotungstic Acid-doped Poly (vinyl alcohol) for DMFC Applications,' J. Membr. Sci., 253(1), 23-31(2005) https://doi.org/10.1016/j.memsci.2004.12.021
  13. Lee, C. S. and Yi, S. C., 'Numerical Methodology for Proton Exchange Membrane Fuel Cell Simulation using Computational Fluid Dynamics Technique,' Korean J. Chem. Eng., 21(6), 11531160(2004)
  14. Guo, J. W., Zhao, T. S., Prabhuram, J. and Wong, C. w., 'Preparation and the Physical/electrochemical Properties of a Pt/C Nanocatalyst Stabilized by Citric Acid for Polymer Electrolyte Fuel Cells,' Electrochim. Acta, 50(10), 1973-1983(2005) https://doi.org/10.1016/j.electacta.2004.09.006
  15. Rao, R K. and Trivedi, D. C., 'Chemical and Electrochemical Depositions of Platinum Group Metals and their Applications,' Coord. Chem. Rev., 249(5), 613-631(2005) https://doi.org/10.1016/j.ccr.2004.08.015
  16. Xiong, L. and Manthiram, A., 'Catalytic Activity ofPt-Ru Alloys Synthesized by a Microemulsion Method in Direct Methanol Ffuel Cells,' Solid State Ion., 176(3), 385-392(2005) https://doi.org/10.1016/j.ssi.2004.08.005
  17. Qiao, H., Kunimatsu, M. and Okada, T., 'Pt Catalyst Configuration by a New Plating Process for a Micro Tubular DMFC Cathode,' J. Power Sources, 139(1), 30-34(2005) https://doi.org/10.1016/j.jpowsour.2004.07.003
  18. Pak, C., Lee, S. J., Lee, S. A. and Chang, H., 'The Effect of Two-Layer Cathode on the Performance of the Direct Methanol Fuel Cell,' Korean J. Chem. Eng., 22(2), 214-218(2005) https://doi.org/10.1007/BF02701487
  19. Lee, Y. R, Yoo, M. J., Chung, G Y., Lim, H. C., Lim, T. H., Nam, S. W. and Hong, S. A., 'Studies on the Modeling Calculations of the Unit Molten Carbonate Fuel Cell,' Korean J. Chem. Eng., 22(2), 219-227(2005) https://doi.org/10.1007/BF02701488
  20. Mozetic, M., Zalar, A., Panjan, P., Bele, M., Pejovnik, S. and Grmek, R, 'A Method of Studying Carbon Particle Distribution in Paint Films' Thin solid films, 376(1),5-8(2000) https://doi.org/10.1016/S0040-6090(00)01347-X
  21. Frysz, C. A. and Chung, D. D. L., 'Improving the Electrochemical Behavior of Carbon Black and Carbon Filaments by Oxidation,' Carbon, 35(8), 1111-1127(1997) https://doi.org/10.1016/S0008-6223(97)00083-3
  22. Boehm, H. P., 'Chemical Identification of Surface Groups,' Adv. Catal., 16, 179-187(1966) https://doi.org/10.1016/S0360-0564(08)60354-5
  23. Boening, H. V., Plasma Science and Technology, Cornell Press, New York(1982)
  24. Park, S. J. and Kim, J. S., 'Influence of Plasma Treatment on Microstructures and Acid-Base Surface Energetics ofNanostructured Carbon Blacks: $N_2$ Plasma Environment,' J. Colloid Interface Sci., 244(2), 336-341(2001) https://doi.org/10.1006/jcis.2001.7920
  25. Donnet, J. B. and Park, S. J., 'The Effect of Microwave Plasma Treatment on the Surface Energy of Graphite as Measured by Inverse Gas Chromatography,' Carbon, 30(2),263-268(1992) https://doi.org/10.1016/0008-6223(92)90089-F