• Title/Summary/Keyword: Photoelectrochemical electrode

Search Result 66, Processing Time 0.026 seconds

Color Removal of Rhodamine B by Photoelectrochemical Process using Powder TiO$_2$ (분말 광촉매를 이용한 광전기화학 공정에서 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.823-830
    • /
    • 2008
  • The feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B(RhB) was performed in the slurry photoelectrochemical reactor with powder TiO$_2$. The photoelectrocatalytic process was consisted of powder TiO$_2$, Pt electrode and three 8 W UV-C lamps. The effects of operating conditions, such as current, electrolyte, air flow rate and electrode material were evaluated. The experimental results showed that optimum TiO$_2$ dosage and current in photoelectrocatalytic process were 0.4 g/L and 0.02 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes(photocatalytic and electrolytic process). It demonstrated a synergetic effect between the photo- and electrochemical catalysis. Photoelectrocatalytic process was affected to air flow rate and optimum air flow rate was 2 L/min. The electrode material and NaCl effect of decolorization of RhB were not significant within the experiment conditions.

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Young;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk;Lee, Eung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 1992
  • For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on $TiO_2$ and Ti by electrodeposition. Also $A1_2O_3$ and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(${\eta}$) was 0.98% for flame oxidized electrode($1200^{\circ}C$ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode($800^{\circ}C$ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The $In_2O_3$ coated $TiO_2$ exhibits 0.8% of photoelectrochemical efficiency but much higher value of ${\eta}$ was obtained with the Increase of applied blas voltage. However, $Al_2O_3$ or NiO coated $TiO_2$ shows much low value of ${\eta}$. The efficiency was dependent on the presence of the metallic interstitial compound $TiO_{0+x}$(x<0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.

  • PDF

Photoelectrochemical Behavior of Chlorophyll a Langmuir-Blodgett Films

  • Choe, Hyeon-Gu;Jeong, U-Cheol;Kim, Yeong-Gi;Lee, Won-Hong;Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.572-575
    • /
    • 2000
  • The highly efficient photoelectric conversion of chlorophyll a (Chl a) monolayers and multilayers was investigated. Using the Langmuir-Blodgett (LB) technique, Chl a monolayers and multilayers were fabricated onto optically transparent electrode, such as ITO glass. The photocurrent could be observed according to the light illumination. The action spectrum of the Chl a LB films was well consistent with its absorption spectrum. The possible application of the proposed system as a constituent of the artificial color recognition device was suggested.

  • PDF

Characteristics of $TiO_2$ Ceramic Electrode for the Photoelectrochemical Conversion (광전기 화학 변환을 위한 $TiO_2$ 세라믹 전극의 특성)

  • 윤기현;김종선;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.356-360
    • /
    • 1983
  • The photocurrent vs. potential characteristics of the $TiO_2$ ceramic electrodes have been investigated as functions of numerous variables including sample purity hydrogen reduction condition and pH of the electrolyte. The difference inphotoresponse between 99.99% and 98.5% $TiO_2$ electrodes was due to electron trapping effect. As the hydrogen reducing temperature of $TiO_2$ electrodes were increased the photocurrent was also increased to certain condition and then decreased. These results can be explained by the behavior of oxygen vacancies.

  • PDF

Improvement of Efficiency of Photoelectrochemical Cells by Blocking Layer Coatings (차단막 코팅을 이용한 광전기화학셀 효율 개선)

  • Moon, Byung-Ho;Kwak, Dong-Joo;Park, Cha-Soo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1485-1486
    • /
    • 2011
  • A layer of $TiO_2$ thin film less than ~500nm in thickness, as a blocking layer, was coated by sol-gel method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte (I-/I3-). The effects of heat treatment conditions of the gel and as-coated film on the thickness and consolidation to substrate were studied. The flexible DSCs were fabricated with working electrode of Ti thin foil coated with blocking $TiO_2$ layer, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited indium doped tin oxide/polyethylene naphthalate (ITO/PEN). The photo-current conversion efficiency of the cell was 5.3% ($V_{oc}=0.678V$, $J_{sc}=12.181mA/cm^2$, ff=0.634) under AM1.5, 100 mW/$cm^2$ illumination.

  • PDF

Photoelectrochemical Converision with $SrTiO_3$ Ceramic Electrodes ($SrTiO_3$ 세라믹 전극에 의한 광전기 화학변환)

  • 윤기현;김태희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.19-24
    • /
    • 1985
  • The phtoelectrochemical porperties of $Nb_2O_5$, $Sb_2O_3$ and $V_2O_5$ doped and pure $SrTiO_3$ ceramic electodes were investigated. Shapes of I-V and I-λ characteristics of the pure $SrTiO_3$ ceramic electrode are similar to those of SrTiO3 single crystal electorde ; the anodic current strats at -0.9V (vs. Ag/AgCI) in 1 N-NaOH aqueous solution and the photoresponse appears at a wavelength of about 390nm and the quantum efficiency is about 3.5% at wavelength of 390nm under 0.5V vs. Ag/AgCl. Photocurrents of $Nb_2O_5$, $Sb_2O_3$ and $V_2O_5$ doped electrodes and $V_2O_5$ doped ceramic electrode appears at wavelength of 390nm and 500nm respectively.

  • PDF

Photoelectrochemical production of hydrogen by anodized photoanode and enzyme (양극산화로 제조된 광어노드와 엔자임 고정화를 통한 광전기화학적 수소제조 연구)

  • Park, Minsung;Shim, Eunjung;Heo, Ahyoung;Yoon, Jaekyung;Joo, Hyunku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.227.2-227.2
    • /
    • 2010
  • 본 연구에서는 양극산화된 $TiO_2$ 전극(anodized tubular $TiO_2$ electrode, ATTE)을 수소제조용 PEC(Photoelectrochemical)시스템에서 광어노드와 기존의 백금전극을 대체하고 $H^+$ 환원능을 향상시키기 위하여 엔자임(Pyrococcus furiosus, Pfu)을 고정화한 후 캐소드로 동시에 활용하였으며, 엔자임 고정을 위한 crosslinker 종류 및 금속담지 여부, ATTE 길이를 통한 수소발생양에 미치는 영향을 연구하였다. ATTE 표면과 엔자임의 amine group의 연결을 위하여 heterobifunctional crosslinker로써 사슬 길이가 상대적으로 짧은 Sulfo-SDA가 유리하였으며, 금속담지의 경우 짧은 튜브의 경우 1% 내에서 효과가 증진되었으나 긴 튜브의 경우는 오히려 광전류 및 궁극적으로 수소발생속도에 불리하게 작용하였다. 또한, 튜브 길이가 긴 ATTE가 짧은 ATTE 보다 수소발생양에서 더욱 효율적임을 알 수 있었다. 텅스텐산화물 담지의 가시광감응에의 담지 효과는 예비 실험 결과로 나타나지 않아, 추가적인 연구가 필요한 것으로 판단된다.

  • PDF

Hydrogen Production from Anodized Tubular $TiO_2$ Electrode and Immobilized cross-linked P. furiosus (양극산화 $TiO_2$ 전극과 cross-linked P. furiosus 활용 물분해 수조제조)

  • Yoon, Jae-Kyung;Park, Min-Sung;Her, Ah-Young;Shim, Eun-Jung;Joo, Hyun-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.749-752
    • /
    • 2009
  • Anodized tubular titania ($TiO_2$) electrodes (ATTEs) are prepared and used as both the photoanode and the cathode substrate in a photoelectrochemical system designed to split water into hydrogen with the assistance of an enzyme and an external bias (solar cell). In particular, the ATTE used as the cathode substrate for the immobilization of the enzyme is prepared by two methods; adsorption and crosslinking. Results show that the optimized amount of enzyme is 10.98 units for the slurried enzyme, 3.66 units for the adsorbed one and 7.32 units for the crosslinked one, and the corresponding hydrogen evolution rates are 33.04, 148.58, and 234.88 umol/hr, respectively. The immobilized enzyme, specifically the chemically crosslinked one, seems to be much superior to the slurried enzyme, due to the enhanced charge-transfer process that is caused by the lower electrical resistance between the enzyme and the ATTE. This results in a greater number of accepted electrons and a larger amount of enzymes able to deal with the electrons.

  • PDF

Photocatalytic Degradation of MB with One-body Photoanode (일체형 포토어노드를 활용한 메틸렌블루의 분해)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Methylene blue(MB) was photocatalytically degraded with one-body photoanode and solar simulator to investigate the possible application to both environmental purification and photoelectrochemical cell for hydrogen production. Photoactive titanium dioxide was formed on both sides of Ti plate following steps such as rinsing-annealing-calcination or anodizing(20 V, 30 V)-annealing($350^{\circ}C$, $450^{\circ}C)$ after etching. The prepared titania plate($2cm{\times}2\;cm$, ca 1.6 mg $TiO_2$ on the basis of $1\;{\mu}m$ thickness) was used to degrade MB(10 ppm in 200 mL solution). The reaction tended to follow the Langmuir-Hinshelwood kinetics with zero order. Comparative experiments with Degussa P25 showed the same zero order kinetics when 2 mg of P25 had been used, while the first order kinetics when 200 mg used. This concludes the feasibility of the prepared titania plate as a material for the purification of low-level harmful organics and an electrode or a membrane for photoelectrochemical system for hydrogen production.

Porous silicon-based chemical and biosensors (다공질 실리콘 구조를 이용한 화학 및 바이오 센서)

  • Kim, Yun-Ho;Park, Eun-Jin;Choi, Woo-Seok;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2410-2412
    • /
    • 2005
  • In this study, two types of PS substrate were fabricated for sensing of chemical and biological substances. For sensing of the humidity and chemical analyzes such as $CH_3OH$ or $C_2H_5OH$, PS layers are prepared by photoelectrochemical etching of silicon wafer in aqueous hydrofluoric acid solution. To evaluate their sensitivity, we measured the resistance variation of the PS diaphragm. As the amplitude of applied voltage increases from 2 to 6Vpp at constant frequency of 5kHz, the resistance variation for humidity sensor rises from 376.3 to $784.8{\Omega}$/%RH. And the sensitivities for $CH_3OH$ and $C_2H_5OH$ were 0.068 uA/% and 0.212 uA/%, respectively. For biological sensing application, amperometric urea sensors were fabricated based on porous silicon(PS), and planar silicon(PLS) electrode substrates by the electrochemical methods. Pt thin film was sputtered on these substrates which were previously formed by electrochemical anodization. Poly (3-methylthiophene) (P3MT) were used for electron transfer matrix between urease(Urs) and the electrode phase, and Urs also was by electrochemically immobilized. Effective working area of these electrodes was determined for the first time by using $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ redox couple in which nearly reversible cyclic voltammograms were obtained. The $i_p$ vs $v^{1/2}$ plots show that effective working electrode area of the PS-based Pt thin film electrode was 1.6 times larger than the PLS-based one and we can readily expect the enlarged surface area of PS electrode would result in increased sensitivity by ca. 1.6 times. Actually, amperometric sensitivity of the Urs/P3MT/Pt/PS electrode was ca 0.91uA/$mM{\cdot}cm^2$, and that of the Urs/P3MT/Pt/PLS electrode was ca. 0.91uA/$mM{\cdot}cm^2$ in a linear range of 1mmol/L to 100mmol/L urea concentrations

  • PDF