• Title/Summary/Keyword: Photoelectrochemical behavior

Search Result 34, Processing Time 0.021 seconds

Semiconductor Behavior of Passive Films Formed on Cr with Various Additive Elements

  • Tsuchiya, Hiroaki;Fujimoto, Shinji;Shibata, Toshio
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Photoelectrochemical response and electrochemical impedance behavior was investigated for passive film formed on sputter-deposited Cr alloy in $0.1kmol{\cdot}m^{-3}$. Photoelectrochemical action spectrum could be separated into two components, which were considered to be derived from $Cr_2O_3$ ($E_g\sim3.6eV$) and $ Cr(OH)_3 $ ($E_g\sim2.5eV$). The band gap energy, $E_g$, of each component was almost constant for various applied potentials. polarization periods and alloying additives. The photoelectrochemical response showed negative photo current for most potentials in the passive region. Therefore, the photo current apparently exhibited p-typesemiconductor behavior. On the other hand, Mort-Schottky plot of the capacitance showed positive slope, which means that passive film formed on Cr alloy has n-type semiconductor property. These apparently conflicting results are rationally explained assuming that the passive film on Cr alloy formed in the acid solution has n-type semiconductor property with a fairly deep donor level in the band gap and forms an accumulation layer in the most of potential region in the passive state.

PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES. (얇은막 산화철 광반도성 전극의 제조와 그 특성)

  • Kim, Il-Kwang;Kim, Yon-Geun;Park, Tae-Young;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

  • Shahid, Muhammad;Choi, Seo-Yeong;Liu, Jingling;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2271-2275
    • /
    • 2013
  • We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a $H_2$ (1 torr) environment. Depending on the temperature used for the reaction with $H_2$, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW $cm^{-2}$ illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient $TiO_2$ mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made.

Enhanced Photoelectrochemical Behavior of Gold-coated Porous n-Si Electrochemically Modified with Polyaniline

  • Park, Soo-Jin;Chae, Won-Seok;Kim, Kang-Jin
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.637-642
    • /
    • 1995
  • The presence of a porous Si layer(PSL) formed on the surface of crystalline silicon by electrochemical etclling in HF solution is found to enhance the stability of n-Si photoanodes, but porous n-Si thus formed is still liable to corrode upon exposure to excitation light. To improve the stability of the porous n-Si electrodes and to reduce the photo-induced corrosion, we have examined the PEC behavior of porous n-Si modified with polyaniline(PANI) and 3 nm thick layer of Au. Comparisons were made between Au/PSL and PANl/Au/PSL photoelectrodes.

  • PDF

Photoelectrochemical Behavior of Cu2O and Its Passivation Effect (산화구리의 광전기화학적 거동 특성)

  • Yun, Hongkwan;Hong, Soonhyun;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide($Cu_2O$) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of $Cu_2O$ is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of $Cu_2O$ while imperfections of the $Cu_2O$ thin films are removed. This study investigates the photoelectrochemical properties of $Cu_2O$. However, severe photo-induced corrosion impedes the use of $Cu_2O$ as a photoelectrode. Two candidates, $TiO_2$ and $SnO_2$, are selected for the passivation layer on $Cu_2O$ by by considering the Pourbaix-diagram. $TiO_2$ and $SnO_2$ passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that $SnO_2$ is a good passivation layer for $Cu_2O$.

Photoelectrochemical cells based on oxide semiconductors

  • Yun, Yeong-Dae;Baek, Seung-Gi;Kim, Ju-Seong;Kim, Yeong-Bin;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.50.2-50.2
    • /
    • 2018
  • The demand for steady and dependable power sources is very high in the field of sustainable energy because of the limited amount of fossil fuels reserves. Among several sustainable alternatives, solar energy may be the most efficient solution because it constitutes the largest renewable energy source. So far, the only practical way to store such large amounts of energy has been to use a chemical energy carrier likewise a fuel. In various solar energy to power conversion systems, the photoelectrochemical (PEC) splitting of water into hydrogen and oxygen by the direct use of solar energy is an ideal process. It is a renewable method of hydrogen production integrated with solar energy absorption and water electrolysis using a single photoelectrode. Previous studies on photoelectrode films for PEC water splitting cells have been mainly focused on synthesizing oxide semiconductors with wide band gaps, such as TiO2(3.2eV), WO3(2.8eV), and Fe2O3(2.3eV). Unfortunately, these pristine oxide photoanodes without any catalysts have relatively low photocurrent densities because of the inherent limitation of insufficient visible light absorption due to the wide bandgap. Specifically, there is a tradeoff between high photocurrent and photoelectrochemical corrosion behavior, which is representative of figures of meritf or PEC materials.

  • PDF

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

Photoelectrochemical Properties of a Vertically Aligned Zinc Oxide Nanorod Photoelectrode (수직으로 정렬된 산화아연 나노막대 광전극의 광전기화학적 특성)

  • Park, Jong-Hyun;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.237-242
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical (PEC) properties of a ZnO nanorod array structure as an efficient photoelectrode for hydrogen production from sunlight-driven water splitting. Vertically aligned ZnO nanorods were grown on an indium-tin-oxide-coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which was formed by thermally oxidizing a sputtered Zn metal thin film. The structural and morphological properties of the synthesized ZnO nanorods were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated ZnO nanorod photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the vertically aligned ZnO nanorod photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.65mA/cm^2$ at 0.8 V vs Ag/AgCl in a 1 mM $Na_2SO_4$ electrolyte. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs Ag/AgCl, which made the device self-powered.