• Title/Summary/Keyword: Photoelastic

Search Result 197, Processing Time 0.023 seconds

Constraining the Mass Loss Geometry of Beta Lyrae

  • Lomax, Jamie R.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • Massive binary stars lose mass by two mechanisms: jet-driven mass loss during periods of active mass transfer and by wind-driven mass loss. Beta Lyrae is an eclipsing, semi-detached binary whose state of active mass transfer provides a unique opportunity to study how the evolution of binary systems is affected by jet-driven mass loss. Roche lobe overflow from the primary star feeds the thick accretion disk which almost completely obscures the mass-gaining star. A hot spot predicted to be on the edge of the accretion disk may be the source of beta Lyrae's bipolar outflows. I present results from spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and the Flower and Cook Observatory's photoelastic modulating polarimeter instrument which have implications for our current understanding of the system's disk geometry. Using broadband polarimetric analysis, I derive new information about the structure of the disk and the presence and location of a hot spot. These results place constraints on the geometrical distribution of material in beta Lyrae and can help quantify the amount of mass lost from massive interacting binary systems during phases of mass transfer and jet-driven mass loss.

Anaysis of the photoelastic of CR lens using circular polariscope (원편광기를 이용한 CR 렌즈의 광 탄성 해석 연구)

  • Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.11-16
    • /
    • 2001
  • The polariscope to measure :he stress in lens was made up quarter-wave plate polarizer and we analyzed two components of light's wave $E_1$ and $E_2$ following the steps. It is clear that the principal-stress difference ${\sigma}_1-{\sigma}_2$ can be determined in 2-D model if fringe order N is measured each point in sample moreover. the optical axes of sample coincide with the principal-stress directions. The birefringence acted to a light wave and a phase retardation were in proportioned to the principal-stressed difference (${\sigma}_1-{\sigma}_2$) and the intensity of final light wave was proportioned to $sin^2({\Delta}/2)$, when ${\Delta}/2=n^{\pi}$ (n=0, 1, 2, ...) and the extinction occurs. As a experimental result, the extinction band shifted owing to a magnitude of lens' external stress.

  • PDF

A Photoelastic Study on Change of Stress Concentration Factor Due to Unsymmetrical Change of Notch Angle (Pure Bending Moment 하(下)에 있는 Notched Strip에서의 Notch Angle의 비대칭적(非對稱的) 변화(變化)에 의(依)한 응력집중계수(應力集中係數)의 변화(變化))

  • Jang-Chule,Mun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.4 no.1
    • /
    • pp.55-58
    • /
    • 1967
  • It is investigated that in what shape the stress concentration factor of a notched strip under pure bending changes due to unsymmetrically varying notch angle. Four models made of CR-39, having parameters of r/d-0.225, h/r=4; r/d=0.225, h/r=2; r/d=0.4, h/r=4 and r/d=0.4, h/r=2 respectively as shown in Fig.1, Fig.2 and Table are tested with the use of polariscope. For each model, notch angle is unsymmetrically varied from $0^{\circ}$ to $180^{\circ}$ at intervals of $15^{\circ}$ as shown in Fig. 1 and Fig. 2. The results of this experiment are Fig. 7 and Fig. 8 and the following are deduced. As notch angle increases 1) from $0^{\circ}$ to $50^{\circ}$, the decrement of concentration factor is slight. 2) from $50^{\circ}$ to 90, the decrement of concentration factor is a little steeper. 3) from $30^{\circ}$ to $140^{\circ}$, the decrement of concentration factor is slight. 4) from $140^{\circ}$ to $180^{\circ}$, the decrement is very steep with an abrupt with an abrupt change in the neighborhood of $140^{\circ}$.

  • PDF

Stress Analysis of Rectangular Bar under Torsion (비틀림을 받는 사각주의 응력해석)

  • Kim, Dong-Hyun;Ji, Joong-Jo;Yoon, Kab-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.53-63
    • /
    • 1986
  • In this study, the stress distribution of rectangular bar under torsion, when warping of both ends is free or constrained, is investigated. Method of separation of variable and Fourier Series are used for the theoretical analysis, and 3dimensional photoelastic stress-freezing method for experimental analysis. The main results are as follows; 1) In the case of warping-constrained rectangular bar, the normal stresses are negligible because they are less then 0.5% of the shear stresses. The maximum normal stress is placed on the point of y=0.61 b when b/a=1 and it gradually moves to the corner y=b when the value of b/a is increased. 2) According to increase of the value of b/a, on the crossection, the maximum shear stress is placed on the middle point of the long side (x=${\pm}a$, y=0) when warping of both ends is free but the middle of the short side (x=0, y=${\pm} b$) when warping is constrained. The stress distribution is straight line when warping is constrained, namely, the stress distribution is proportional to the distance from the axis of centroid, but parabolic when warping is free. 3) The values of the combined stress of warping-constrained bar, if the influence of the loaded point is neglected, are generally smaller than those of warping-free.

  • PDF

TWO-DIMENSIONAL PHOTOELASTIC ANALYSIS ON VARIOUS TYPES OF COPING DESIGNS UNDER OVERDENTURE (Overdenture의 지대치 Coping형태에 따른 광탄성 응력 분석)

  • Yang, Hye-Ryung;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.103-115
    • /
    • 1991
  • This study was executed to analyze the stress distribution of tooth, supporting structure and overdenture by two-dimensional photoelastics when 6 types of coping were inserted. Types of coping were designed to be inclined plane, short dome, medium dome, shore square, medium square and o-p anchor attachment. Fortes were applied respectively as follows: 1) Vertical load of 10 kg on the incisal edge 2) $30^{\circ}$ diagonal load of 8 kg on the labial surface. The results were as follows: 1. In case of short dome and o-p anchor attachment, the stress is evenly distributed on teeth, supporting tissue structure under vertical and $30^{\circ}$ diagonal load, then short dome and o-p anchor attachment show better stress distribution and stabilization of overdenture than any other coping under labial diagonal load. 2. Inclined plane revealed greater tendency of displacement of overdenture than any other coping under labial diagonal load. 3. Long height of copings had greater concentration of stress than short height of copings. 4. In case of medium dome under labial diagonal load, there were high level of stress concentration on denture base contacted labioincisal angle of coping.

  • PDF

Dynamic Mixed Mode Crack Propagation Behavior of Structural Bonded Joints

  • Lee, Ouk-Sub;Park, Jae-Chul;Kim, Gyu-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.752-763
    • /
    • 2000
  • The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having $10^6$ fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors, $K_1\;and\;K_2$, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

  • PDF

A Study on Behavior of Fracture and Stress Distribution in Spot Welds (점熔接材 의 破壞擧動 과 應力分布)

  • 송삼홍;김부동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 1984
  • Having found by means of a tension-shear test an optimal spot welding condition under which the maximum weld strength is to be brought forth, this study made an examination of behavior of fracture concerned with behavior of stress distribution, observed around the nugget periphery of the specimens prepared under the optimal conditions, with one point spot welded mild steel sheets. The resultant findings are as follows: (1)There remarkably exists an optimal spot welding condition to indicate the maximum weld strength, and fracture of the specimens spot welded under that condition occurs outside the nugget boundary. (2)An experiment on the basis of a photoelastic model reveals that the maximum stress is distributed along the center line of the steel plate width but occurs on the region corresponding to heat affected zone of spot welds. (3)Heat affected zone of spot welds consists of coarse grains with considerably low micro Vickers hardness value and of fine grains of high micro Vickers hardness value, and in this unbalanced structure weak region are represented in coarse grain region, where fracture is initiated and continues its propagation.

Analysis of Propagating Crack Along Interface of Isotropic-Orthotropic Bimaterial by Photoelastic Experiment

  • Lee, K.H.;Shukla, A.;Parameswaran, V.;Chalivendra, V.;Hawong, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.102-107
    • /
    • 2001
  • Interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic Photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static crack is greater when $\alpha=90^{\circ}C$ (fibers perpendicular to the interface) than when $\alpha=0^{\circ}C$ (fiber parallel to the interface) and those when $\alpha=90^{\circ}C$ are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating crack are greater when $\alpha=0^{\circ}C$ than $\alpha=90^{\circ}C$. The relationship between complex dynamic stress intensity factor $|K_D|$ and crack speed C is similar to that for isotropic homogeneous materials, the rate of increase of energy release rate G or $|K_D|$ with crack speed is not as drastic as that reported for homogeneous materials.

  • PDF

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Effect of Chip-Tool Contact Stress Distribution in Workpiece During of Wood Machining - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제1보(第1報)) - 절삭중(切削中) 공구면(工具面)의 응력분포에 미치는 접촉(接觸)칩의 영향(影響) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.54-60
    • /
    • 1988
  • Machinabilities means inherent properties of pinus densiflora at Chunyang district to be CNC machined easily or not, and processing abilities of the tool and machine together. This explanation signifies that machinabilities have two phases of signification, depended on considering and stress either materials or tools preferentially. This paper discuss machinabilities, the following items are usually employed as the indices of stress distribution at the cutting tool rake face. The stress distributions on the chip - tool contact surface at the early stage of the chip forming and under the stage of fringe pattern in wood cutting were analyzed the photoelastic method. The tool used in the present experiment was the special cutting tool H.S.S. one made in laboratory. And isochromatic fringe pattern and isolinic line of work piece by chip-behavior during the cutting operation were photographed with the feed camera continuously. The effects on the stress, distribution on the rake face of the epoxy tool and the strain distribution in the work piece of wood plate by chip behavior are cleared in pre cent experiment.

  • PDF

A Study on the Bimaterial Constant of Two Dissimillar Isotropic Bimaterial Under Static and Dynamic Load (정적 및 동적 하중을 받는 두 상이한 등방성 이종재료의 이종재료상수에 대한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1776-1785
    • /
    • 2004
  • In this research, the relationships between static bimaterial constant and dynamic oscillation index are studied. It was certified that static bimaterial constant has the same form equation as the dynamic oscillation index. Bimaterial constant and oscillation index are increased with the increment of Young's modulus ratio and approached to the some value. Isochromatic fringe patterns are slanted to the left side with increment of bimaterial constants and oscillation index. Though patterns of stress components in above the crack surface are similar to each other, their magnitudes are different a little. In the ahead of crack tip, there are big differences in the isochromatic fringe patterns and their magnitudes. The influence of bimaterial with Young's modulus ratio is bigger in the propagation crack than in the stationary crack.