• 제목/요약/키워드: Photocurrent density

검색결과 148건 처리시간 0.024초

Photocurrent Improvement by Incorporation of Single-Wall Carbon Nanotubes in TiO2 Film of Dye-Sensitized Solar Cells

  • Jung, Kyoung-Hwa;Jang, Song-Rim;Vittal, R.;Kim, Dong-Hwan;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권10호
    • /
    • pp.1501-1504
    • /
    • 2003
  • Single-wall carbon nanotubes (SWCN) were integrated in $TiO_2$ film and the beneficial influence on the dyesensitized solar cells in terms of improved photocurrent was studied in the light of static J-V characteristics obtained both under illumination and in the dark, photocurrent transients, IPCE spectra and impedance spectra. Compared with a solar cell without SWCN, it is established that the photocurrent density of the modified cell increases at all applied potentials. The enhanced photocurrent density is correlated with the augmented concentration of electrons in the conduction band of $TiO_2$ and with increased electrical conductivity. Explanations are additionally corroborated with the help of SEM, Raman spectra and dye-desorption measurements.

Transient Photocurrent in Amorphous Silicon Radiation Detectors

  • Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shinn, Kyung-Sub;Cho, Gyu-Seong
    • Nuclear Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.468-475
    • /
    • 1997
  • The transient photocurrent in amorphous silicon radiation detectors (n-i-n and forward biased p-i-n) were analyzed. The transient photocurrents in these devices could be modeled using multiple trap levels in the forbidden gap. Using this model the rise and decay shapes of the photocurrents could be fitted. The decaying photocurrent shapes of the p-i-n and n-i-n devices after a short duration of light pulse showed a similar behavior at low dark current density levels, but at higher dark current density levels the photocurrent of the p-i-n diode decayed faster than that of the n-i-n, which could be explained by the decreased electron lifetimes in the forward biased p-i-n diode at high dark current densities. The transient photoconductive gain behaviors in the amorphous silicon radiation detectors are discussed in terms of device configuration, dark current density and time scale.

  • PDF

유기발광소자의 결정구조에 따른 Photocurrent 발광효율특성 연구 (Photocurrent multiplication process in OLEDs due to light irradiation and crystalline hole transporting layer)

  • 임은주;이기진;한우미;이정윤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1026-1029
    • /
    • 2002
  • We report the electric properties of organic light emitting diodes (OLEDs) by controlling the carrier density according to the crystalline of copper(II) phthalocyanine(CuPc) and the irradiation light intensity. OLEDs were constructed with indium tin oxaide (ITO)/CuPc/triphenyl-diamin (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq3)/Al. The transport properties of OLEDs were changedby the heat-treatments of CuPc. The irradiation of red and blue light exciting CuPc, TPD and Alq3. And then we observed the carrier density of OLEDs.

  • PDF

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

Binding energy study from Photocurrent signal in $CdGa_2Se4$ layers

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.47-47
    • /
    • 2009
  • The photoconductive $CdGa_2Se4$ layer has been investigated using photocurrent (PC) spectroscopy as a function of temperature. Three peaks corresponding to the band-to-band transitions were observed in the PC spectra for all temperature ranges. Also, contrary to our expectation, the PC intensities decreased with decreasing temperatures. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, two dominant levels by the exponential variation of the PC with varying temperature were observed, one at high temperatures and the other at low temperatures.

  • PDF

Characterization of carrier transport and trapping in semiconductor films during plasma processing

  • Nunomura, Shota;Sakata, Isao;Matsubara, Koji
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.391-391
    • /
    • 2016
  • The carrier transport is a key factor that determines the device performances of semiconductor devices such as solar cells and transistors [1]. Particularly, devices composed of in amorphous semiconductors, the transport is often restricted by carrier trapping, associated with various defects. So far, the trapping has been studied for as-grown films at room temperature; however it has not been studied during growth under plasma processing. Here, we demonstrate the detection of trapped carriers in hydrogenated amorphous silicon (a-Si:H) films during plasma processing, and discuss the carrier trapping and defect kinetics. Using an optically pump-probe technique, we detected the trapped carriers (electrons) in an a-Si:H films during growth by a hydrogen diluted silane discharge [2]. A device-grade intrinsic a-Si:H film growing on a glass substrate was illuminated with pump and probe light. The pump induced the photocurrent, whereas the pulsed probe induced an increment in the photocurrent. The photocurrent and its increment were separately measured using a lock-in technique. Because the increment in the photocurrent originates from emission of trapped carriers, and therefore the trapped carrier density was determined from this increment under the assumption of carrier generation and recombination dynamics [2]. We found that the trapped carrier density in device grade intrinsic a-Si:H was the order of 1e17 to 1e18 cm-3. It was highly dependent on the growth conditions, particularly on the growth temperature. At 473K, the trapped carrier density was minimized. Interestingly, the detected trapped carriers were homogeneously distributed in the direction of film growth, and they were decreased once the film growth was terminated by turning off the discharge.

  • PDF

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Oh, Il-Whan
    • 전기화학회지
    • /
    • 제14권4호
    • /
    • pp.191-195
    • /
    • 2011
  • Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.

FTO 기판위 TiO2 나노로드의 시드박막층 (Seed Layers in TiO2 Nanorods on FTO)

  • 김현;양비룡
    • 한국세라믹학회지
    • /
    • 제52권1호
    • /
    • pp.9-12
    • /
    • 2015
  • Nano-structured electrodes were fabricated to develop efficient photoelectrochemical conversion systems for the synthesis of hydrogen from water and hydrocarbon fuels from $CO_2$. In this work, we compared the photoactivity of rutile $TiO_2$ nanorods grown on FTO and SEED/FTO by a hydrothermal method. An analysis of the microstructures showed that the density of nanorod/SEED/FTO samples, which showed only the (002) peak in their x-ray diffraction patterns, was two times higher than that of a nanorod/FTO sample. The photocurrent density of nanorod/SEED/FTO samples was increased by as much as 40% of the photocurrent density of the nanorod/FTO sample due to the increased specific density of the nanorods. However, the transient time for a recombination of photogenerated electrons and holes was 20 times faster in the nanorod/SEED/FTO. The seed layers are discussed as possible recombination sites.

주석-납 기반 페로브스카이트 고농도 전구체 용액을 이용한 광전류 향상 연구 (Study for Improved Photocurrent via High Concentrated Tin-lead Perovskite Precursor Solution)

  • 홍효진;이승민;임정민;노준홍
    • Current Photovoltaic Research
    • /
    • 제11권3호
    • /
    • pp.96-102
    • /
    • 2023
  • Sn-Pb narrow-bandgap perovskite solar cells, which is a light-harvesting layer thicker than 1.3 micrometers, is needed to enhance the low photocurrent. The fabrication of such a thick film through solution processing is a key challenge. Here, we studied and characterized the film by using a precursor solution of increased concentration, comparing it with the universally used 1-micrometer Sn-Pb perovskite film. The increase in molar concentration clearly induced thickness enhancement, but we observed that it also created numerous voids at the interface with bottom charge transporting layer. We hypothesized that these voids might hinder the increase in photocurrent associated with thickness enhancement. By introducing methylammonium chloride (MACl), we successfully fabricated Sn-Pb perovskite film with a thickness of 1.3 micrometer and no voids. Void-controlled Sn-Pb perovskite solar cells not only demonstrated superior short-circuit current density compared to those with voids but also operated smoothly under light exposure.

Photoactivities of Nanostructured α-Fe2O3 Anodes Prepared by Pulsed Electrodeposition

  • Lee, Mi Gyoung;Jang, Ho Won
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.400-405
    • /
    • 2016
  • Ferric oxide (${\alpha}-Fe_2O_3$, hematite) is an n-type semiconductor; due to its narrow band gap ($E_g=2.1eV$), it is a highly attractive and desirable material for use in solar hydrogenation by water oxidation. However, the actual conversion efficiency achieved with $Fe_2O_3$ is considerably lower than the theoretical values because the considerably short diffusion length (2-4 nm) of holes in $Fe_2O_3$ induces excessive charge recombination and low absorption. This is a significant hurdle that must be overcome in order to obtain high solar-to-hydrogen conversion efficiency. In consideration of this, it is thought that elemental doping, which may make it possible to enhance the charge transfer at the interface, will have a marked effect in terms of improving the photoactivities of ${\alpha}-Fe_2O_3$ photoanodes. Herein, we report on the synthesis by pulsed electrodeposition of ${\alpha}-Fe_2O_3$-based anodes; we also report on the resulting photoelectrochemical (PEC) properties. We attempted Ti-doping to enhance the PEC properties of ${\alpha}-Fe_2O_3$ anodes. It is revealed that the photocurrent density of a bare ${\alpha}-Fe_2O_3$ anode can be dramatically changed by controlling the condition of the electrodeposition and the concentration of $TiCl_3$. Under optimum conditions, a modified ${\alpha}-Fe_2O_3$ anode exhibits a maximum photocurrent density of $0.4mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE) under 1.5 G simulated sunlight illumination; this photocurrent density value is about 3 times greater than that of unmodified ${\alpha}-Fe_2O_3$ anodes.