• Title/Summary/Keyword: Photocatalytic system

Search Result 153, Processing Time 0.018 seconds

Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant (이산화티타늄 담지 섬유형 활성탄소의 특성 및 악취오염물질 제어를 위한 응용)

  • Jo, Wan-Kuen;Hwang, Eun-Song;Yang, Sung-Bong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • The application of fibrous activated carbon (FAC)-titanium dioxide ($TiO_2$) hybrid system has not been reported yet for the control of malodorous dimethyl sulfide (DMS) at residential environmental levels. Accordingly, the current study was designed not only to characterize this hybrid system using x-ray diffraction method, particulate surface measurement and Fourier transform Infrared (FTIR) method, but also to evaluate its adsorptional photocatalytic activity (APA) for the DMS removal. The physical/surface characteristics of FAC-$TiO_2$ which was prepared in this study suggested that the hybrid material might have certain APA for DMS. The Brunauer-Emmett-Teller (BET) specific area, total pore volume, micropore volume and mesopore volume decreased all as the $TiO_2$ amounts coated on FAC increased, whereas the reverse was true for average pore diameter. $TiO_2$ coated onto FAC did not influence the adsorptional activity of FAC for the DMS input concentration of 0.5 ppm. The APA test of the hybrid material presented that the initial removal efficiencies of DMS were 93, 78, 71 and 57% for the flow rates of 0.5, 1.0, l.5 and 2.0 L/min, respectively, and they decreased somewhat 2 h after the experiment started and kept almost constant for the rest experimental period. Under this pseudo-equilibrium condition, the DMS removal efficiencies were 78, 58, 53 and 36% for the four flow rates, respectively. Meanwhile, there were no significant byproducts observed on the surfaces of the hybrid material. Consequently, this study suggests that, under the experimental conditions used in the present study, the hybrid material can be applied for DMS at residential environment levels without being interfered by any byproducts.

Analysis of Characteristics and Optimization of Photo-degradation condition of Reactive Orange 16 Using a Box-Behnken Method (실험계획법 중 Box-Behnken(박스-벤켄)법을 이용한 반응성 염료의 광촉매 산화조건 특성 해석 및 최적화)

  • Cho, Il-Hyoung;Lee, Nae-Hyun;Chang, Soon-Woong;An, Sang-Woo;Yonn, Young-Han;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.917-925
    • /
    • 2006
  • The aim of our research was to apply experimental design methodology in the optimization of photocatalytic degradation of azo dye(Reactive orange 16). The reactions were mathematically described as a function of parameters amount of $TiO_2(x_1)$, and dye concentration($x_2$) being modeled by the use of the Box-Behnken method. The results show that the responses of color removal(%)($Y_1$) in photocatalysis of dyes were significantly affected by the synergistic effect of linear term of $TiO_2(x_1)$ and dye concentration($x_2$). Significant factors and synergistic effects for the $COD_{Cr}$, removal(%)($Y_2$) were the linear term of $TiO_2(x_1)$ and dye concentration($x_2$). However, the quadratic term of $TiO_2(x_1^2)$ and dye concentration($x_2^2$) had an antagonistic effect on $Y_1$ and $Y_2$ responses. Canonical analysis indicates that the stationary point was a saddle point for $Y_1$ and $Y_2$, respectively. The estimated ridge of maximum responses and optimal conditions for $Y_1:(X_1,\;X_2)$=(1.11 g/L, 51.2 mg/L) and $Y_2:(X_1,\;X_2)$=(1.42 g/L, 72.83 mg/L) using canonical analysis was 93% and 73%, respectively.

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF