• Title/Summary/Keyword: Photocatalytic system

Search Result 152, Processing Time 0.027 seconds

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Advanced Oxidation Processes of Secondary Effluent for Reuse (재사용을 위한 하수처리장 방류수의 고급산화처리)

  • 조일형;송경석;성기석;정문호;이홍근;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2000
  • The use of photo-catalytic processes in pollution abatement and resource has a significant economic importance. Therefore, the applications of photochemical oxidation of secondary effluent driven by UV, TiO2, TiO2/UV, H2O2/UV and TiO2/H2O2/UV, have been investigated in order to treat the secondary effluent from municipal sewage. Various experimental parameters such as BOD, CODcr, Nurbidity, total P, and SPC were examined in each photo-catalytic reaction system. The results showed that the application of single oxidant such as UV, TiO2 only has a minor effect on parameters reduction (CODcr, BOD, etc) to treat the secondary effluent, whereas the combinations of oxidants increase the removal efficiency. The best removal efficiency in every parameters was achieved by the combination of TiO2, H2O2 and UV. It was also found that the optimum amount of TiO2 for the treatment was 1g/ι to achieve water reuse standard. From the results, the photocatalytic reaction system can be an alternative as a post-treatment to treat the secondary effluent from municipal sewage.

  • PDF

CdSe Sensitized ZnO Nanorods on FTO Glass for Hydrogen Production under Visible Light Irradiation (가시광 수소생산용 CdSe/ZnO nanorod 투명전극)

  • Kim, Hyun;Yang, Bee Lyong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • The ZnO is able to produce hydrogen from water however it can only absorb ultraviolet region due to its 3.37eV of wide band gap. Therefore efficiency of solar hydrogen production is low. In this work we report investigation results of improved visible light photo-catalytic properties of CdSe quantum dots(QDs) sensitized ZnO nanorod heterostructures. Hydrothermally vertically grown ZnO nanorod arrays on FTO glass were sensitized with CdSe by using SILAR(successive ionic layer adsorption and reaction) method. Morphology of grown ZnO and CdSe sensitized ZnO nanorods had been investigated by FE-SEM that shows length of $2.0{\mu}m$, diameter of 120~150nm nanorod respectively. Photocatalytic measurements revealed that heterostructured samples show improved photocurrent density under the visible light illumination. Improved visible light performance of the heterostructures is resulting from narrow band gap of the CdSe and its favorable conduction band positions relative to potentials of ZnO band and water redox reaction.

Development of air-sterilization purification system of fusion and composite structure using broadband-to-active photocatalyst (광대역대 활성광촉매를 활용한 융·복합 구조 공기살균정화장치 개발)

  • Yoon, Sueng-Bae;Hwang, Yun-Jung;Kim, Seung-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.147-151
    • /
    • 2019
  • Modern people spend most of their daily lives in their homes, schools, or workplaces, hospitals, shopping malls, subway stations, rooms, and parking lots. According to the survey, air quality management at the multi-use facility is less than 50% satisfied. In this study, a photocatalytic filtration system is developed by utilizing a broadband-to-active photocatalyst that utilizes a media photocatalyst filter that removes airborne germs from indoor air as well as indoor air quality and operates on visible light as well as ultraviolet light.

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations (UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구)

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.

Study of Degradation of Bisphenol A with $TiO_2$ Powder in CPC System (CPC (Compound Parabolic Collector) 내 이산화티탄을 이용한 비스페놀 A (Bisphenol A)의 분해에 관한 연구)

  • Hwang, An-Na;Park, Myung-Hee;Lim, Beom-Guk;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2011
  • In this study, photocatalytic degradation and mineralization of bisphenol A (BPA), which has been listed as one of endocrine disruptors, were carried out in the CPC system using $Tio_2$ slurry and UVA irradiation. The degradation efficiency has been investigated under the controlled parameters including initial concentration (5, 10, 20 mg/L), dosage of $Tio_2$ (0.1, 0.5, 1.0 g/L), UVA power (0, 80, 120 W) and temperature (0, 20, 30). At 10mg/L of initial concentration, BPA was degraded above 80% after 10min, BPA were degraded 97% and 49% at 20 mg/L and 30 mg/L, respectively. At $Tio_2$ dosage was 0.1 and 0.5 g/L, the degradations of BPA showed similar trend and were about 70% after 1 hr, and the degradation of BPA was above 80% after 30 min at 1 g/L of $Tio_2$ dosage. The increase of degradation seem to be due to the increase in the total surface area, namely number of active sites, available for the photocatalytic reaction as the dosage of photocatalyst increased. When the UVA power was 120 W, BPA was degraded rapidly above 60% after 10min of reaction time. To investigate the effect of temperature, carried out experiment controlled temperature, there were no significant differences depending on the temperature. After 1hr, the degradation of BPA were 46%, 67%, and 69% at 10, 20 and $30^{\circ}C$.

A Study on Ozonation of Sulfamethoxazole (Sulfamethoxazole의 오존산화처리에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.459-469
    • /
    • 2019
  • The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

Disinfection Characteristic of Sewage Wastewater Treatment Using Solar Light/TiO2 Film System (태양광/광촉매를 이용한 오폐수 살균특성)

  • Cho Il-Hyoung;Lee Nae-Hyun;An Sang-Woo;Kim Young-Kyu;Lee Seung-Mok
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.677-688
    • /
    • 2006
  • Currently, the application of $TiO_2$ photocatalyst has been focused on purification and treatment of wastewater. However, the use of conventional $TiO_2$ slurry photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we studied that solar light/$TiO_2$ film system was designed and developed in order to examine disinfection characteristics of sewage wastewater treatment. The optimum conditions for disinfection such as solar light intensity, characteristic of sewage wastewater, amounts of $TiO_2$ and comparison of solar ligth/$TiO_2$ systems with UV light/$TiO_2$ system was examined. The results are as follows: (1) photocatalytic disinfection process with solar light in the presence of $TiO_2$ film more effectively killed total coliform (TC) than solar light or $TiO_2$ film absorption only. (2) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with remain resistant material. (3) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with the increase of amounts of $TiO_2$. (4) TC survival ratio decreased linearly with increasing UV light intensity. (5) The disinfection effect of solar light/$TiO_2$ slurry system decreased more than UV light/$TiO_2$ film systems. (6) The disinfection reaction followed first-order kinetics. We suggest that solar light instead of using artificial UV light was conducted to investigate the applicability of alternative energy source in the disinfection of TC and the degradation of organic material.

Environmental Functional Soundproof Wall (친환경 기능성 방음벽)

  • Kim, Ji Sung;Lee, Woo Mi;Kim, Il Ho;Kim, Kwang Soo
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.65-73
    • /
    • 2013
  • PURPOSES : This study is to suggest future development direction and application of environmental noise barriers as multi-functional soundproof wall. METHODS : Based on the literature review, case study and patent search, research and patent trend were investigated. Patent search was conducted by Patent searching tools, 'Focust'. RESULTS : As environmental noise barriers, Vegetative soundproof wall, photovoltaic soundproof wall, and air-pollution reduction soundproof wall were investigated. First of all, In Korea, Vegetative soundproof wall is being developed mostly as soundproof wall that has vegetation foundation inside, to meet the domestic condition with 23 patent applications. Second, Photovoltaic soundproof wall is being developed mainly with efficiency of photovoltaic system rather than soundproofing. And it is limited to one generation solar cell technology, although Solar cell technology is developing at a rapid pace. On the other hand, for reducing air-pollutant by soundproof wall, a variety of methods are being suggested (filtration, adsorption, and photocatalytic oxidation), and one of them, adsorption are applied for developing air pollution reduction soundproof wall in Korea. CONCLUSIONS: The above soundproof wall is not simple structure, but road facility applied fusion technique. Therefore, as one system, it is difficult to harmonize due to various considerations for design factor. However, if it's possible that a benefits of one system apply to another system, Synergy effect may be created. In the foreseeable future, soundproof wall may be considered as a road system using fusion technique rather than just functional facility. Therefore, substantial studies for applying multi-functional soundproof wall on the road are needed for the future.

A Study on the Possibility of Dye Wastewater Treatment of Electrical Photocatalytic System Using TiO2 nanotube plate (TiO2 nanotube plate를 이용한 전기적광촉매시스템의 염료폐수 처리 가능성 연구)

  • Lee, Yongho;Sun, Minghao;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.418-424
    • /
    • 2019
  • In this study, $TiO_2$ nanotubes with different morphologies were prepared in the electrolyte consisting of ethylene glycol, ammonium fluoride($NH_4F$), and deionized water($H_2O$) by controlling the voltage and time in the anodization method. Thicknesses and pore sizes of these $TiO_2$ nanotubes were measured to interpret the relationship between anodization conditions and $TiO_2$ nanotube morphologies. Element contents in the $TiO_2$ nanotubes were detected for further analysis of $TiO_2$ nanotube characteristics. Photoelectrolyticdecolorization efficiencies of the $TiO_2$ nanotube plates with various morphologies were tested to clarify the morphology that a highly active $TiO_2$ nanotube plate should have. Influences of applied voltage in photoelectrolysis processes and sodium sulfate($Na_2SO_4$) concentration in wastewater on the decolorization efficiency were also studied. To save the equipment investment cost in photoelectrolysis methods, a two-photoelectrode system that uses the $TiO_2$ nanotube plates as photoanode and photocathode instead of adding other counter electrodes was studied. Compared with single-photoelectrode system that uses the $TiO_2$ nanotube plate as photoanode and titanium plate as cathode on the view of the treatment of dye wastewater containing different amounts of salt. As a result, a considerably suitable voltage was strictly needed for enhancing the photoelectrolyticdecolorization effect of the two-photoelectrode system but if salts exist in wastewater, an excellent increase in the decolorization efficiency can be obtained.