Browse > Article
http://dx.doi.org/10.15681/KSWE.2019.35.6.459

A Study on Ozonation of Sulfamethoxazole  

Lee, Cheal-Gyu (Department of Environmental Engineering, Cheongju University)
Publication Information
Abstract
The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.
Keywords
Activation energy; Advanced oxidation process; Ozonation; Sulfamethoxazole;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akhtar, J., Amin, N, S., and Aris, A. (2011). Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using $Fe_2O_3/CeO_2$ loaded activated carbon, Chemical Engineering Journal, 170, 163-144.
2 Alexandra, G. G., Ofrao, J. J. M., and Pereira, M. F. R. (2013). Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole, Journal of Environmental Chemical Engineering, 1, 260-269.   DOI
3 Ao, X. and Liu, W. (2016). Degradation of sulfamethxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide, Chemical Engineering Journal, 313, 629-637.   DOI
4 Baquero, F., Martinez, J. L., and Canton, R. (2008). Antibiotics and antibiotic resistance in water environments, Current Opinion in Biotechnology, 19, 260-265.   DOI
5 Beltran, F. J., Aguinaco, A., and Garcia-Araya, J. F. (2009). Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water, Water Research, 43, 1359-1369.   DOI
6 Beltran, F. J., Aguinaco, A., and Garcia-Araya, J. F. (2012). Application of ozone involving advanced oxidation processes to remove some pharmaceutical compounds from urban wastewaters, Ozone: Science and Engineering, 34, 3-15.   DOI
7 Beltran, F. J., Aguinaco, A., Garcia-Araya, J. F., and Oropesa, A. (2008). Ozone and photocatalytic process to remove the antibiotic sulfamethoxazole from water, Water Research, 42, 3799-3808.   DOI
8 Beltran, F. J., Rivas, J., and Montero-de-Espinosa, R. (2002). Catalytic ozonation of oxalic acid in an aqueous $TiO_2$ slurry reactor, Applied Catalysis B: Environmental, 39, 221-231.   DOI
9 Bin, A. K., Duczmal, B., and Machniewski, P. (2001). Hydrodynamics and ozone mass transfer in a tall bubble cloumn, Chemical Engineering Science, 56, 6233-6240.   DOI
10 Buffle, M. O., Schumacher, J., Meylan, S., Jekel, M., and Gunten, U. V. (2006). Ozonation and advanced oxidation of wastewater: effect of $O_3$ dose, pH, DOM and $HO{\cdot}$-scavengers on ozone decomposition and $HO{\cdot}$ generation, Ozone: Science and Engineering, 28, 247-259.   DOI
11 Carbajo, M., Beltran, F. J., Gimeno, O., Acedo, B., and Rivas, F. J. (2007). Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst, Applied Catalysis B: Environmental, 74, 203-210.   DOI
12 Chen, Y. H., Chang, C. Y., Chiu, C. Y., Yu, Y. H., Chiang, P. C., Ku, Y., and Chen, J. N. (2003). Dynamic behavior of ozonation with pollutant in a countercurrunt bubble column with oxygen mass transfer, Water Research, 37, 2583-2594.   DOI
13 Creamasco, M. A. and Castilho, G. J. (2018). Simpilfied models to describe transport and decomposition of ozone in a bubble column, Journal of Environmaental Science and Engineering B, 7, 243-252.
14 DeMore, W. B. and Tschuikow-Roux, E. (1974). Temperature dependence of the reations of OH and $HO_2$ with $O_3$, The Journal of Physical Chemistry, 78(15), 1447-1451.   DOI
15 Dlugosz, M., Z'mudzki, P., Kwiecien, A., Szczubialka, K., Krzek, J., and Nowakowska, M. (2015). Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating $TiO_2$-expanded perlite photocatalyst, Journal of Hazardous Materials, 298, 146-153.   DOI
16 Dodd, M. and Huang, C. (2004). Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms and pathways, Environmental Science & Technology, 38, 5607-5615.   DOI
17 Espejo, A., Aguinaco, A., Amat, A. M., and Beltran, F. J. (2014). Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater, Journal of Environmental Science and Health, Part A, 49, 410-421.   DOI
18 Egorova, G. V., Voblikova, V. A., Sabitova, L. V., Tkachenko, I. S., Tkachenko, S. N., and Lunin, V. V. (2015). Ozone Solubility in Water, Moscow University Chemistry Bulletin, 70(5), 207-210.   DOI
19 Elovitz, M. S. and Gunten, U. V. (1998). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, Ozone: Science and Engineering, 21, 239-260.   DOI
20 Elovitz, M. S., Gunten, U. V., and Kaiser, H. P. (2000). Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties, Ozone: Science and Engineering, 22, 123-150.   DOI
21 Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W., and Cui, F. (2014). Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-A comparative study, Journal of Hazardus Marterials, 274, 258-269.   DOI
22 Goh, E. S. and Lee, H. J. (2016). Development trend of ciosensors for antimicrobial drugs in water environment, Applied Chemistry for Engineering, 27(6), 565-572. [Korean Literature]   DOI
23 Gonzalerz, O., Esplugas, M., Sans, C., Toress, A., and Esplugas, S. (2009). Perfomance of a dequencing batch biofilm eeator for the treatment of pre-oxidized sulfamethoxazole solutions, Water Research, 43, 2149-2158.   DOI
24 Guo, W. Q., Yin, R. L., Zhou, X. J., Du, J. S., Cao, H. O., Yang, S. S., and Ren, N. Q. (2015). Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways, Ultrasonics Sonochemistry, 22, 182-187.   DOI
25 Kang, J. W., Koo, J. Y., Choi, S. I., Jeong, J. C., and Yook, U. S. (Trans.). (2002). Water treatment technology using ozone, DongHwa Technology Publishing, Isao Soumiya (Original work Published 1989), 173-221. [Korean Literacture]
26 Hou, L., Zhang, H., Wang, L., Chen, L., Xiong, Y., and Xue, X. (2013). Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst, Separation and Purification Technology, 117, 46-52.   DOI
27 Jang, Y. J., Yoo, Y. J., Sul, W. J., Cha, C. J., Rhee, O. J., and Chae, J. C. (2017). Effect of antibiotic resistant factors in effluent of wastewater treatment plant on stream, Korean Journal of Microbiology, 53(4), 316-319. [Korean Literature]   DOI
28 Jekel, M., Dott, W., Bergmann, A., Dunnbier, U., Gnir, R., Haist-Gulde, B., Hamscher, G., Letzel, M., Licha, T., Lyko, S., Miehe, U., Sacher, F., Scheurer, M., Schmidt, C. K., Reemtsma, T., and Ruhl, A. S. (2015). Selection of organic process and source indicator substances for the anthropogenically influenced water cycle, Chemosphere, 125, 155-167.   DOI
29 Kasprzyk-Hordern, B., Ziolek, M., and Nawrocki, J. (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Applied Catalysis B: Environmental, 46(4), 639-669.   DOI
30 Kim, H. Y., Kim, T. H., and Yu, S. H. (2015). Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV), Journal of Environmental Science and Health , Part A, 50, 292-300.   DOI
31 Kim, S. D., Cho, J. W., Kim, I. S., Vanderford, B. J., and Snyder., S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Research, 41, 1013-1021.   DOI
32 Kummerer, K. (2009). Antibiotics in the aquatic environment - a review - Part I, Chemosphere, 75(4), 417-434.   DOI
33 Lester, Y., Avisar, D., and Mamane, H. (2010). Photodegradation of the antibiotic sulphamethoxazole in water with UV/$H_2O_2$ advanced oxidation process, Environmental Technology, 31, 175-183.   DOI
34 Laidler, K. J. (1964). Chemical Kinetics Second Edition, McGraw-Hill Book Company, New York, 49-72.
35 Lee, C. G. (2016). Effect of UV Irradiation and $TiO_2$ Addition on the Ozonation of Pyruvic Acid, Journal of Korean Society on Water Environment, 32(1), 23-29. [Korean Literature]   DOI
36 Lee, C. G. and Kim, M. C. (2010). A study of ozonation characteristics of bis(2-chloroethyl) ether, Applied Chemistry for Engineering, 21(6), 610-615. [Korean Literature]
37 Lin, H., Niu, J., Xu, J., Li, Y., and Pan Y. (2013). Electrochemical mineralization of sulfamethoxazole by $Ti/SnO_2-Sb/Ce-PbO_2$ anode: Kinetics, reaction pathways cost evolution, and energy, Electrochimica Acta, 97, 167-174.   DOI
38 Lucas, M. S., Peres, J. A., Puma, G. L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes ($O_3$, $O_3/UV$ and $O_3/UV/H_2O_2$) in a pilot-scale bubble column reactor and process economics, Separation and Purification Technology, 72, 235-241.   DOI
39 Luna, M. D., Veciana, M. L., Su, C. C., and Lu, M. C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, Journal of Hazardous Materials, (217-218), 200-207.   DOI
40 Manahan, E. S. (1990). Environmental Chemistry Forth Edition, LEWIS PUBLISHIERS, 22-25.
41 Martini, J., Orge, C, A., Faria, J, L., Pereira, M, F, R., and Soares, O, S, G, P. (2018). Sulfamethoxazole degradation by combination of advanced oxidation process, Journal of Environmental Chemical Engineering, 6(4), 4054-4060.   DOI
42 Nelson, Jr., D. D. and Mark, S. Z. (1994). A mechanistic study of the reaction of $HO_2$ radical with ozone, The Journal of Physical Chemistry A, 98, 2101-2104.   DOI
43 Abellan, M. N., Bayarri, B., Gimenez, J., and Costa, J. (2007). Photocatalytic degradation of sulfamethoxazole in aqueous suspension of $TiO_2$, Applied Catalysis B: Environmental, 74, 233-241.   DOI
44 Martins, R. C., Dantas, R. F., Sans, C., Esplugas, S., and Quinta-Ferreira, R. M. (2015). Ozone/$H_2O_2$ performance on the degradation of sulfamethoxazole, Ozone: Science & Engineering, 37, 509-517.   DOI
45 Ministry of Environment (ME). (2018). Standard methods for water quality, Ministry of Environment [Korean Literature]
46 Mizuno, T., Tsuno, H., and Yamada, H. (2007). Development of ozone self-decomposition model for engineering design, Ozone: Science and Engineering, 29, 55-63.   DOI
47 National Institute of Environmental Research (NIER). (2013). The 2ed Comprehensive Action Plan for Anti microbial resistance (2013-2017), National Institute of Environmental Research, Report 2013, 28-30. [Korean Literature].
48 Park, J. E., Kim, M. W., Lee, G. J., Baek, J. W., and Lee, S. K. (2016). Evaluation of behavior of activated sludge systems exposed to acetaminophen and sulfamethoxazole, Journal of the Korean Society for Environmental Analysis, 19(2), 119-125. [Korean Literature]
49 Perez, S., Eichhorn, P., and Aga, D. S. (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment, Environmental Toxicology and Chemistry, 2(4), 1361-1367.   DOI
50 Petrovic, M., Gonzales, S., and Barcelo, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water, Trends in Analytical Chemistry, 22, 685-696.   DOI
51 Pocostales, J. P., Alvarez, P. M., and Beltran, F. J. (2010). Kinetic modeling of powdered activated carbon ozonation of sulfamethoxazole in water, Chemical Engineering Journal, 164, 70-76.   DOI
52 Rivas, F. J., Beltran, F. J., Gimeno, O., and Acedo, B. (2001). Wet air oxidation of wastewater from olive oil mills, Chemical Engineering and Technology, 24(4), 415-421.   DOI
53 Qi, C., Liu, X., Lin, C., Zhang, X., Ma, J., Tan, H., and Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity, Chemical Engineering Journal, 249, 6-14.   DOI
54 Qi, S. Q., Mao, Y. Q., Guo, X. F., Wang, X. M., Yang, H. W., and Xie, Y. F. F. (2016). Evaluating dissolved ozone in a bubble column using a discrete-bubble model, Ozone: Science and Engineering, 39(1), 44-53.
55 Qui, Y. (1999). Kinetic and mass transfer studies of the reacions between dichlorophenols and ozone in liquid-liquid and gas-liquid systems, Docter's Thesis, Mississippi State University. Mississippi, United States of America.
56 Shahidi, D., Moheb, A., Abbas, R., Larouk, S., Roy, R., and Azzouz, A. (2015). Total mineralization of sulfamethoxazole and aromatic pollutants through $Fe^{2+}$-montmorillonite catalyzed ozonation, Journal of Hazardous Materials, 298, 338-350.   DOI
57 Shiyun, Z., Xuesong, Z., Daotang, L., and Weimin, C. (2003). Ozonation of naphthalene sulfonic acids in aqueous solutions: Part II-relationships of their COD, TOC removal and the frontier orbital energies, Water research, 37(5), 1185-1191.   DOI
58 Velegraki, T., Balayiannis, G., Diamadopoulos, E., Katsaounis, A., and Mantzavinos, D. (2010). Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: Statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity, Chemical Engineering Journal, 160, 538-548.   DOI
59 Wang, X. D., Lv, Y., Li, M. M., and Liu, H. Y. (2014). Removal of nonylphenol from water by ozone, in advanced materials research, Trans Tech Publications, 859, 357-360.
60 Xin, Y., Gao, M., Wang, Y., and Ma, D. (2014). Photoelectrocatalytic degradation of 4-nonylphenol in water with $WO_3/TiO_2$ nanotube array photoelectrodes, Chemical Engineering Journal, 242, 162-169.   DOI
61 Yang, Y., Lu, X., Jiang, J., Ma, J., Liu, G., Cao, Y., Liu, W., Li, J., Pang, S., Kong, X., and Luo, C. (2017). Degradation of slufamethoxazole by UV, UV/$H_2O_2$ and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate, Water Research, 118, 196-207.   DOI
62 Yin, R., Guo, W., Zhou, X., Zheng, H., Du, J., Wu, Q., Chang, J., and Ren, N. (2016). Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic $Fe_3O_4$ nanoparticles: catalytic performance and degradation mechanism, Royal Society of Chemistry, 6, 19265-19270.
63 Zhou, H., Smith, D. W., and Stanley, S. J. (1994). Modeling of dissolved ozone concentration profiles in bubble columns, Journal of Environmental Engineering, 120(4), 821-840.   DOI